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Abstract. Multiparty session typing (MPST) is a method to make con-
current programming simpler. The idea is to use type checking to auto-
matically detect safety and liveness violations of implementations relative
to specifications. In practice, the premier approach to combine MPST
with mainstream languages—in the absence of native support—is based
on external DSLs and associated tooling.
In contrast, we study the question of how to support MPST by using
internal DSLs. Answering this question positively, this paper presents
the mpst.embedded library: it leverages Scala’s lightweight form of de-
pendent typing, called match types, to embed MPST directly into Scala.
Our internal-DSL-based approach avoids programming friction and leaky
abstractions of the external-DSL-based approach for MPST.

1 Introduction

Background With the advent of multicore processors, multithreaded program-
ming—a notoriously error-prone enterprise—has become increasingly important.

Because of this, mainstream languages have started to offer core support for
higher-level communication primitives besides lower-level synchronisation prim-
itives (e.g., Clojure, Go, Kotlin, Rust). The idea has been to add message passing
as an abstraction for shared memory, as—supposedly—channels are easier to use
than locks. Yet, empirical research shows that “message passing does not neces-
sarily make multithreaded programs less error-prone than shared memory” [33].

One of the core challenges is as follows: given a specification S of the com-
munication protocols that an implementation I should fulfil, how to prove that I
is safe and live relative to S? Safety means “bad” communication actions never
happen: if a communication action happens in I, then it is allowed to happen
by S. Liveness means “good” communication actions eventually happen.

Multiparty session typing (MPST) MPST [16] is a method to automatically
prove safety and liveness of communication protocol implementations relative
to specifications. The idea is to write specifications as behavioural types [1, 19]
against which implementations are type-checked. Formally, the central theorem is
that well-typedness at compile-time implies safety and liveness at run-time. Over
the past 10–15 years, much progress has been made, including the development
of many tools to combine MPST with mainstream languages (e.g., F# [29],
F? [36], Go [5], Java [17, 18], OCaml [20], Rust [26, 27], Scala [2, 6, 12, 30], and
TypeScript [28]). Fig. 1 visualises the idea behind MPST in more detail:
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Fig. 2: A few possible runs of the Negotation protocol

1. First, a protocol among roles r1, . . . , rn is implemented as a session of pro-
cesses P1, . . . , Pn (concrete), while it is specified as a global type G (abstract).
The global type models the behaviour of all processes together.

2. Next, G is decomposed into local types L1, . . . , Ln by projecting G onto each
role. Each local type models the behaviour of one process alone.

3. Last, safety and liveness are verified by type-checking each Pi against Li.

Example 1. The Negotiation protocol, originally defined in the MPST literature
by Neykova et al. [29], consists of roles Alice and Bob. Fig. 2 shows three possible
runs. First, a proposal is communicated from Alice to Bob. Next, its acceptance,
rejection, or a counter-proposal is communicated from Bob to Alice. Next:

– In case of an acceptance, a confirmation is communicated from Alice to Bob.
– In case of a rejection, the protocol ends.
– In case of a counter-proposal, its acceptance, rejection, or another counter-

proposal is communicated from Alice to Bob. And so on.

The following recursive global type specifies the protocol:

G = aaa_bbb:Propose(Int).µX.bbb_aaa:


Accept.aaa_bbb:Confirm.X

Reject.X

Propose.aaa_bbb:


Accept.bbb_aaa:Confirm.X

Reject.X

Propose(Int).X

Global type p_q :{ti .Gi}1≤i≤n specifies the communication of a value of data
type ti from role p to role q, followed by Gi, for some 1≤ i≤n; we omit braces
when n=1. Global type X specifies termination. The following recursive local
type, projected from the global type, specifies Bob (Alice is similar):

Lbbb = aaabbb?Propose(Int).µX.bbbaaa !


Accept.aaabbb?Confirm.X
Reject.X

Propose.aaabbb?


Accept.bbbaaa !Confirm.X
Reject.X

Propose(Int).X

Local types pq !{ti .Li}1≤i≤n and pq?{ti .Li}1≤i≤n specify the send and receive
of a value of data type ti from role p to role q, followed by Li, for some 1≤ i≤n;
we omit braces when n=1. Local type X specifies termination. The following
process, well-typed by the local type, implements a version of Bob:
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Fig. 3: Workflow of external-DSL-based MPST tools

Pbbb = sJaaabbbK?_:Propose(Int) .

loops sJaaabbbK !propose(11) . sJaaabbbK?


_:Accept . sJaaabbbK !confirm . 0
_:Reject . 0

_:Propose(Int) . recurs

Process xJpqK !e implements the send of the value of expression e from role p to
role q, followed by P , in session x. Process xJpqK?{xi :ti .Pi}1≤i≤n implements the
receive of a value of data type ti into variable xi, followed by Pi, in session x, for
some 1≤ i≤n; we omit braces when n=1. Process 0 implements termination.
Processes loopx P and recurx implement iteration in session x. ut

In practice [34], the premier approach to combine MPST with mainstream
languages—in the absence of native support—is based on: (1) external DSLs1
to write global types; (2) associated tooling to generate corresponding code in
mainstream languages, including Scribble [17,18], its extensions [5,8,9,26–30,36],
StMungo [25], mpstpp [24], νScr [35], Pompset [6], Teatrino [2], and Oven [12].

The key ideas of the external-DSL-based approach were originally conceived
by Deniélou, Hu, and Yoshida. It is based on two insights: local types can be
interpreted as finite-state machines (FSM) [10,11], where states and transitions
model sends and receives; FSMs can be encoded as object-oriented application
programming interfaces (API) [17, 18], where classes and methods model states
and transitions. Fig. 3 visualises the workflow. First, the programmer writes a
global type in a DSL; this is the input of the MPST tool. Next, the MPST tool
projects the global type to local types, interprets the local types as FSMs, and
encodes the FSMs as APIs in the mainstream language; this is the output of the
MPST tool. Last, the programmer uses the APIs to write processes.

Example 2. Fig. 4 shows a global type for Negotiation (cf. G in Exmp. 1), writ-
ten in the external DSL of Scribble. Statement t from p to q specifies the com-
munication of a value of data type t from p to q. Statement choice at r { G1

} or · · · or { Gk } specifies a choice among G1, . . . , Gk made by r.
Fig. 5 shows the FSM for Bob, derivable from Fig. 4. Transition labels pq !t

and pq?t specify the send and receive of a value of data type t from p to q.
Fig. 6 shows a callback-based API for Bob in Scala, derivable from Fig. 5.

Trait Si in the API corresponds with state i of the FSM; methods of trait Si

1 A domain-specific language (DSL) is either external or internal. External DSLs are
stand-alone languages with their own dedicated syntax, while internal DSLs are
embedded languages into a general-purpose language (GPL) with syntax inherited
from that GPL. Both approaches have advantages and disadvantages [13].
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Propose from A to B; rec X {
choice at B

{ Accept from B to A;
Confirm from A to B; }

or { Reject from B to A; }
or { Propose from B to A;

choice at A
{ Accept from A to B;

Confirm from B to A; }
or { Reject from A to B; }
or { Propose from A to B;

continue X; } } }

Fig. 4: Global type for Negotation (Scribble)
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Fig. 5: FSM for Bob

trait Loop[S]:
def loop(f: ((S => S5, S) => S5)): S5

trait S1:
def recvFromA(f: (Propose , S2) => S5): S5

trait S2 extends Loop[S2]:
def sendToA(v: Accept , f: S4 => S5): S5
def sendToA(v: Reject , f: S5 => S5): S5
def sendToA(v: Propose , f: S3 => S5): S5

trait S3 extends Loop[S3]:
def recvFromA(f1: (Accept , S6) => S5,

f2: (Reject , S5) => S5 ,
f3: (Propose , S2) => S5): S5

... // traits S4 , S5, and S6

Fig. 6: Callback-based API for Bob (Scala)

class Propose(val x: Int)
class Accept
class Reject
class Confirm

val v = new Propose (11)

def bob(s1: S1): S5 =
s1.recvFromA ((x, s2) =>

s2.loop((recur , s2) =>
s2.sendToA(v, s3 =>

s3.recvFromA(
(_, s6) =>

s6.sendToA (...) ,
(_, s5) => s5 ,
(_, s2) =>

recur(s2)))))

Fig. 7: Process for Bob

correspond with transitions of state i. Traits S2 and S3 also extend trait Loop
to be able to start callback-based iteration in states 2 and 3 (i.e., these are the
only states on a cycle in the FSM) in a type-sound manner. We note that each
method and each callback returns a value of type S5 to ensure that the program
can terminate only when the final state has been reached.

To demonstrate the usage of the API, Fig. 7 shows a process for Bob (cf. P
in Exmp. 1). The idea is to write a function, bob, that consumes an “initial state
object” s1 as input and produces a “final state object” s5 as output. First, the
only communication action that can be performed, is the one for which s1 has a
method (receiving). When that method is called, the actual receive is performed,
and the callback is called with the received value x and a fresh “successor state
object” s2. Next, the only communication actions that can be performed, are
the ones for which s2 has a method (sending). And so on. ut

This work The external-DSL-based approach is well-established in the MPST
literature: it is used in all MPST tools [5, 6, 8, 9, 12, 17, 18, 20, 24–30, 35, 36] that
support classical MPST as in Fig. 1 (global types and projection; fully automatic;
static up-to linearity). However, despite the major impact, it has two weaknesses:
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Programming friction: The usage of an external DSL to specify protocols as
global types causes programming friction. In general, this is a well-document-
ed issue with external DSLs (e.g., [13]): new syntax needs to be learned; new
tools to edit DSL code need to be adopted; extra effort is needed to intermix
DSL code with the mainstream language.

Leaky abstractions: As demonstrated in Exmp. 2, APIs generated by MPST
tools leak internal details: global types are essentially declarative, whereas
the FSMs that seep through the APIs are essentially imperative. This repre-
sentational gap causes dissonance between the level of abstraction at which
global types are produced by the programmer (before API generation), and
the level of abstraction at which local types are consumed by that same
programmer in terms of FSMs (after API generation).

To avoid these weaknesses, we explore a different approach and study the
question of how to support classical MPST by using internal DSLs. Answer-
ing this question positively, we present the mpst.embedded library: it leverages
Scala’s “lightweight form of dependent typing” [3], called match types, to embed
global/local types directly into Scala. As a result, mpst.embedded offers a fric-
tionless interface between global/local types and processes (i.e., no new syntax,
editors, or other tools need to be adopted). Moreover, mpst.embedded avoids leaky
abstractions by not relying on FSMs; global/local types are first-class citizens.

In this way, mpst.embedded is the first internal-DSL-based MPST tool that
supports all key aspects of classical MPST as in Fig. 1 (unlike Imai et al. [20], who
do not support n-ary choice and require extra manual work to guide projection).
This is a significant contribution, because: (a) internal DSLs have advantages
over external DSLs, but (b) it is far from obvious how to build an internal DSL
for MPST in a mainstream language without native support for session types.

Technically, to apply classical MPST and offer static guarantees, some form
of compile-time computation is needed. This is the role of match types. They
are essentially match expressions at the type level, which are evaluated by the
Scala compiler as part of its static analysis, and which we use in this work to
embed MPST theory. That is, the Scala compiler can check the typing rules of
MPST theory by evaluating carefully crafted match types.

First, through extensive examples, we give an overview of the capabilities of
mpst.embedded (Sect. 2 and Sect. 3). Next, we present technical details (Sect. 4).
Last, we conclude this paper with related work and future work (Sect. 5).

2 A Tour of mpst.embedded: Basic Features

Global types Fig. 8 (top rows) shows the correspondence between global types
in mpst.embedded and in MPST theory. In mpst.embedded, each global type G is
built from classes Com, End, Loop, and Recur. The third type parameter of Com is
an n-ary product type, called “the branches”. Type parameter X of Loop is bound
in type parameter G to the whole Loop[X, G], to embed a recursive type. Each
role p or q, and each recursion variable X, is a Scala string literal type (e.g.,
"foo" is a type with one inhabitant, "foo"). Each data type t is a Scala type.
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Global types:
Com[p, q, ((t1, G1), . . ., (tn, Gn))], p_q :{ti .Gi}1≤i≤n,
End, Loop[X, G], Recur[X] X, µX.G, X
Local types:
Send[p, q, ((t1, L1), . . ., (tn, Ln))], pq !{ti .Li}1≤i≤n,
Recv[p, q, ((t1, L1), . . ., (tn, Ln))], pq?{ti .Li}1≤i≤n,
End, Loop[X, L], Recur[X] X, µX.L, X
Processes
x.send(q, e, (_) => P), xJpqK !e,
x.recv(p, ((x1: t1, _) => P1, . . ., (xn: tn, _) => Pn)), xJpqK?{xi :ti .Pi}1≤i≤n,
x.loop((recur, _) => P), recur(x) loopx P , recurx

Fig. 8: Correspondence between mpst.embedded (left) and MPST theory (right)

Example 3. Fig. 9 shows a global type for Negotiation (cf. G in Exmp. 1). ut

Local types and projection Fig. 8 (middle rows) shows the correspondence
between local types in mpst.embedded and in MPST theory. We add that local
types can be computed from global types fully automatically and statically via
type Proj: the Scala compiler reduces Proj[G, r] to the projection of G onto r.

Example 4. Fig. 10 shows a local type for Bob (cf. Lbbb in Exmp. 1). Alternatively,
it can be computed by having the Scala compiler reduce Proj[S, "B"]. ut

Processes and type checking Fig. 8 (bottom rows) shows the correspondence
between processes in mpst.embedded and in MPST theory. In mpst.embedded, each
process is a sequence of calls to methods send, recv, loop, and recur of class Local.
This generic class has two type parameters: one to represent a role (enacted by
the process), and another one to represent a local type (with which the process
must comply). In turn, instances of Local are obtained through calls to method
init of class Global. This generic class has one type parameter to represent a
global type (with which all processes must comply). Method init consumes a
role, initialises the session for it, and produces a Local object for it. Calls to init
are blocking : they return only when all processes have called init.

Intuitively, Global and Local objects represent executable sessions from the
global and local perspective, leveraging the same abstractions as the global and
local types by which they are parametrised (no leaky abstractions).

Example 5. Fig. 11 shows processes for Alice and Bob on lines 1–19 and 21–31
(cf. P in Exmp. 1), plus session initiation on lines 33–35. We make three remarks:

– The process for Bob looks similar to Fig. 7. However, Fig. 11 is defined in
terms of communication actions in a session (Local objects), whereas Fig. 7
is defined in terms of transitions of an FSM (Si objects).



Multiparty Session Typing, Embedded 7

1 type S =
2 Com["A", "B", ((Propose ,
3 Loop["X",
4 Com["B", "A", (
5 (Accept , Com["A", "B", ((Confirm , End))]),
6 (Reject , End),
7 (Propose , Com["A", "B", (
8 (Accept , Com["B", "A", ((Confirm , End))]),
9 (Reject , End),

10 (Propose , Recur["X"]))]))]]))]

Fig. 9: Global type for Negotiation

1 type `S@B ` = // equivalent to Proj[S, "B"] -- S is defined in Fig. 9
2 Recv["A", "B", ((Propose ,
3 Loop["X",
4 Send["B", "A", (
5 (Accept , Recv["A", "B", ((Confirm , End))]),
6 (Reject , End),
7 (Propose , Recv["A", "B", (
8 (Accept , Send["B", "A", ((Confirm , End))]),
9 (Reject , End),

10 (Propose , Recur["X"]))]))]]))]

Fig. 10: Local type for Bob

1 def alice(
2 s: Local["A", Proj[S, "A"]] // S is defined in Fig. 9
3 ): Local["A", End] =
4 s.send("B", new Propose (5), s =>
5 s.recv("B", (
6 (_, s) => s.send("B", new Confirm , s => s),
7 (_, s) => s,
8 (v, s) =>
9 if

10 v.x < 11
11 then
12 s.send("B", new Accept , s =>
13 s.recv("B", (_, s) => s))
14 else
15 s.send("B", new Propose (6), s =>
16 s.recv("B", (
17 (_, s) => s.send("B", new Confirm , s => s),
18 (_, s) => s,
19 (_, s) => s.send("B", new Reject , s => s)))))))
20

21 def bob(
22 s: Local["B", `S@B `] // `S@B ` is defined in Fig. 10
23 ): Local["B", End] =
24 s.recv("A", (_, s) =>
25 s.loop((recur , s) =>
26 // val error = s // redundant line -- only used in Exmp. 6
27 s.send("A", new Propose (11), s =>
28 s.recv("A", (
29 (_, s) => s.send("A", new Confirm , s => s),
30 (_, s) => s,
31 (_, s) => recur(s))))))
32

33 val s = new Global[S]
34 val _ = new Thread (() => { alice(s.init["A"]); () }). start
35 val _ = new Thread (() => { bob (s.init["B"]); () }). start

Fig. 11: Processes for Alice and Bob
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– The process for Bob exactly mimics the recursive structure of local type
`S@B`. Such mimicry is not a general requirement for well-typed processes,
as demonstrated by the process for Alice: instead of exactly mimicking the
recursive structure of Proj[S, "A"] (which has a similar recursive structure
as S in Fig. 9), it mimics two unfoldings of Proj[S, "A"], followed by termi-
nation. That is, lines 5–15 in Fig. 11 comply with the first unfolding, while
lines 16–19 comply with the second unfolding, without entering a loop. ut

Using mpst.embedded, the Scala compiler statically checks for each call α
on a Local object, parametrised by local type L, whether or not α complies
with L. If not, the Scala compiler reports an error. In this way, mpst.embedded
assures that well-typedness at compile-time implies safety and liveness at run-
time, modulo linear usage of Local objects (checked dynamically), and modulo
non-terminating/exceptional behaviour (unchecked). These two provisos are
standard for MPST tools. As the type parameters of Local objects are erased at
compile-time, only generic Local objects exist at run-time.

Example 6. The following protocol violations are reported at compile-time:

– In Fig. 11, replace line 29 with one of the following:
(_, s) => s.send("A", new Reject , s => s), // wrong data type

(_, s) => s.send("C", new Confirm , s => s), // wrong receiver

(_, s) => s.recv("A", (_, s) => s), // wrong communication action

– In Fig. 11, uncomment line 26 and replace line 31 with:
(_, s) => recur(error )))))) // wrong recursive type

The following protocol violation is reported as an error at run-time:

– In Fig. 11, replace line 31 with:
(_, s) => { recur(s); recur(s) }))))) // linearity violation

The technical report [22] contains a screenshot of error reporting. ut

Besides protocol violations, additionally, basic well-formedness violations of
global types are reported as errors at compile-time; they are checked as part of
the instantiation of generic class Global (e.g., Fig. 11, line 33). For instance, for
Com[p, q, ((t1, G1), . . ., (tn, Gn))], we always require p 6= q and n ≥ 1.

3 The Tour, Continued: Advanced Features

Full merging To project global types, an auxiliary partial operator to merge
local types—the projections—is needed. There are two variants [31]: “plain” (ba-
sic) and “full” (advanced). Plain merge is relatively easy to support, but it works
for few local types, so many global types cannot be projected. Conversely, full
merge works for many local types, but it is relatively hard to support. For in-
stance, Imai et al. [20] support only manual full merge (i.e., the programmer must
write extra protocol-specific code to guide the computation of projections). In
contrast, mpst.embedded supports automatic full merge via type Merg: the Scala
compiler reduces Merg[L1, L2] to the full merge of L1 and L2.
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1 type S =
2 Com["B1", "S", ((String ,
3 Com["S", "B1", ((Int ,
4 Com["S", "B2", ((Int ,
5 Com["B1", "B2", ((Int ,
6 T))]))]))]))]
7

8 type T =
9 Com["B2", "B1", (

10 (Ok ,
11 Com["B2", "S", ((Ok,
12 Com["B2", "S", ((String ,
13 Com["S", "B2", ((Date ,
14 End ))]))]))]) ,
15 (Quit ,
16 Com["B2", "S", ((Quit ,
17 End ))]))]

Fig. 12: Global type for Two-Buyer

1 type `S@S ` = // equiv. Proj[S, "S"]
2 Recv["B1", "S", ((String ,
3 Send["S", "B1", ((Int ,
4 Send["S", "B2", ((Int ,
5 // ignore Int from B1 to B2
6 `T@S `))]))]))]))]
7

8 type `T@S ` = // equiv. Proj[T, "S"]
9 Merg[(
10 // ignore Ok from B2 to B1
11 Recv["B2", "S", ((Ok,
12 Recv["B2", "S", ((String ,
13 Send["S", "B2", ((Date ,
14 End ))]))]))] ,
15 // ignore Quit from B2 to B1
16 Recv["B2", "S", ((Quit ,
17 End ))])]

Fig. 13: Local type for Seller

1 def seller(
2 s: Local["S", Proj[S, "S"]]
3 ): Local["S", End] =
4 s.recv("B1", (_, s) =>
5 val v = 11
6 s.send("B1", v, s =>
7 s.send("B2", v, s =>
8 s.recv("B2", (
9 (_: Ok , s) =>

10 s.recv("B2", (_, s) =>
11 val q: "B2" = "B2"
12 val v = new Date
13 s.send(q, v, s => s)),
14 (_: Quit , s) => s)))))

Fig. 14: Process for Seller

1 // one session between B1, B2, and S
2 type S = ... // Fig. 12
3 type T = ... // Fig. 12
4

5 // another session between B2 and B3
6 type U =
7 Com["B2", "B3", ((Int ,
8 Com["B2", "B3", ((Delegatee ,
9 Com["B3", "B2", (
10 (Ok , End),
11 (Quit , End ))]))]))]
12

13 type Delegatee =
14 Local["B2", Proj[T, "B2"]]

Fig. 15: Global types for Three-Buyer

1 def buyer2( // Three -Buyer version
2 s: Local["B2", Proj[S, "B2"]],
3 u: Local["B2", Proj[U, "B2"]]
4 ): Local["B2", End] =
5 s.recv("S", (x, s) =>
6 s.recv("B1", (y, s) =>
7 u.send("B3", x - y, u =>
8 u.send("B3", s, u =>
9 u.recv("B3", (

10 (_, u) => u, ...))))))

Fig. 16: Process for Buyer2

1 def buyer3(
2 u: Local["B3", Proj[U, "B3"]]
3 ): Local["B3", End] =
4 u.recv("B2", (_, u) =>
5 u.recv("B2", (s, u) =>
6 val v = new Quit
7 u.send("B2", v, u =>
8 s.send("B1", v, s =>
9 s.send("S", v, s => s))
10 u)))

Fig. 17: Process for Buyer3

Example 7. The Two-Buyer protocol, originally defined in the MPST literature
by Honda et al. [16], consists of roles Buyer1, Buyer2, and Seller : “[Buyer1 and
Buyer2] wish to buy an expensive book from Seller by combining their money.
Buyer1 sends the title of the book to Seller, Seller sends to both Buyer1 and
Buyer2 its quote, Buyer1 tells Buyer2 how much she can pay, and Buyer2 either
accepts the quote or rejects the quote by notifying Seller.” We use an extended
version defined by Coppo et al. [7], in which Buyer2 notifies not only Seller about
acceptance/rejection, but also Buyer1. In the case of acceptance, Buyer2 sends
his address to Seller, and Seller sends back the delivery date to Buyer2.
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Fig. 12 and Fig. 13 show a global type for Two-Buyer and a local type for
Seller (split into S/S@S and T/T@S for presentational reasons.) First, we note that
the communication from Buyer1 to Buyer2 on line 5 in the global type has no
counterpart on line 5 in the local type; as Seller does not participate in the
communication, it is simply skipped in the projection. Second, we note that the
communication from Buyer2 to Buyer1 on line 9 in the global type is ignored,
too, but the projections of the two branches do need to be combined into one.
This is achieved by having the Scala compiler reduce

Merg[Recv["B2", "S", ((Ok, ...))], Recv["B2", "S", ((Quit, ...))]]

to Recv["B2", "S", ((Ok, ...), (Quit, ...))].
Fig. 14 shows a process for Seller. It demonstrates that merging is a type-level

concept, hidden from the programmer: the Scala compiler reduces Merg[...] and
type-checks the code against the result transparently. ut

Delegation Sessions are higher-order : Local object s for a first session can be
delegated between processes via Local object u for a second session, by send-
ing s via u. In the presence of delegation, within each session, well-typedness
at compile-time continues to imply safety and liveness at run-time (modulo the
“two provisos”; page 8). However, between sessions, liveness is not assured; sup-
porting this would require substantial extra technical machinery [7], so none of
the existing MPST tools support it.

Example 8. The Three-Buyer protocol, originally defined in the MPST literature
by Coppo et al. [7], consists of roles Buyer1, Buyer2, Buyer3, and Seller. It
resembles the Two-Buyer protocol, except that Buyer2 can ask Buyer3 to enact
his role on his behalf—unbeknownst to Buyer1 and Seller—through delegation.

Fig. 15 shows global types for Three-Buyer. Global type S specifies the first
sub-protocol among Buyer1, Buyer2, and Seller; it is identical to the global type
for Two-Buyer. Global type U specifies the second sub-protocol between Buyer2
and Buyer3. Notably, line 8 specifies the delegation from Buyer2 to Buyer3.

Fig. 16 shows a process for Buyer2: on lines 1–4, Local objects for two sessions
are consumed as inputs (to engage in two sub-protocols); on lines 5–6, the first
session is used; on lines 7–10, the second session is used; on line 8, the remainder
of the first session is delegated via the second session. Similarly, Fig. 17 shows a
process for Buyer3: on lines 1–3, a Local object for the first session is consumed
as input; on line 5, a Local object for the second session is received.

The process for Seller is exactly the same in Three-Buyer as in Two-Buyer
(Fig. 14). In particular, Seller does not know that it communicates with Buyer3
instead of Buyer2. Thus, delegation is hidden from each role not involved. ut

Generic global types By embedding global/local types as Scala types, Scala’s
built-in mechanism of type parametrisation is readily available. This allows the
programmer to write generic global types with type parameters for roles (common
in external-DSL-based MPST tools) and sub-protocols (novel of mpst.embedded).
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1 type T[P <: Role , Q <: Role] =
2 Com[P, Q, ((Propose ,
3 Loop["X",
4 U[Q, P,
5 U[P, Q, Recur["X"]]]]))]

6 type U[P <: Role , Q <: Role , G <: GType] =
7 Com[P, Q, (
8 (Accept , Com[Q, P, ((Confirm , End))]),
9 (Reject , End),
10 (Propose , G))]

Fig. 18: Generic global types for Negotiation

p_q :{ti .Gi}i∈I � p = pq !{ti .Gi � r}i∈I
p_q :{ti .Gi}i∈I � q = pq?{ti .Gi � r}i∈I
p_q :{ti .Gi}i∈I � r =

d
{Gi � r}i∈I if r /∈ {p, q}

X � r = X

µX.G � r = µX.(G � r)

X � r = X

Fig. 19: Projection in MPST theory

Example 9. To alleviate the repetitive feel of Fig. 9, Fig. 18 shows generic global
types that leverage type parameters. Type U generically specifies the communica-
tion of an acceptance, rejection, or counter-proposal from P to Q (type parameters
for roles), followed by G (type parameter for a sub-protocol) in case of a counter-
proposal; it can be instantiated twice to replace lines 5–7 and lines 8–10 in Fig. 9.
This is done in type T, which generically specifies a role-parametric version of
the whole S in Fig. 9. Thus, T["A", "B"] is equivalent to S in Fig. 9. ut

Consistency mpst.embedded also supports explicit consistency checking of sets
of local types. Details can be found in the technical report [22], as they are rather
technical/subtle. We do evaluate consistency checking times in Sect. 4.3, though.

4 Technical Details

As mpst.embedded closely follows MPST theory, and as it uses unique parts of the
Scala type system, first, we summarise a few essential preliminaries (Sect. 4.1).
Next, we describe our embedding of MPST into Scala (Sect. 4.2).

This section focusses on the basic features of Sect. 2. It allows us to keep the
necessary background on MPST theory simple and succinct, while still being
able to explain the general ideas of the embedding into the Scala type system
in sufficient depth. The advanced features of Sect. 3 are based on more complex
theoretical concepts, but their embedding follows similar general ideas.

4.1 Preliminaries

MPST theory We summarise the theory behind classical MPST (Fig. 1):

Global types, local types, and processes: The syntax was defined and ex-
plained in Fig. 8 (right column) and Exmp. 1.

Projection: Let G� r denote the projection of G onto r; it is defined in Fig. 19.
The projection of a communication yields a send if r is the sender, a receive if
r is the receiver, or the full merge—denoted by u—of the projected branches
otherwise (i.e., r does not participate in the communication).
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Γ ` e : tj and Γ, x : Lj ` P , for some j ∈ I
Γ, x : pq !{ti .Li}i∈I ` xJpqK !e.P

[Send]
only X local types in Γ

Γ ` 0
[Term]

Γ, x : Li, xi : ti ` Pi, for each i ∈ I
Γ, x : pq?{ti .Li}i∈I) ` xJpqK?{xi :ti .Pi}i∈I

[Recv]
Γ, x : L[µX.L/X] ` P

Γ, x : µX.L ` P [Unfold]

Fig. 20: Type checking in MPST theory (excerpt)

Type checking: Let Γ ` P denote well-typedness of P in typing environment
Γ ; it is defined in Fig. 20. Rule [Send] states that a send from p to q in x
is well-typed when the local type of x specifies a send, e is well-typed by
tj , and P is well-typed after setting the local type of x to Lj in the typing
environment, for some j. Rule [Recv] states that a receive from p to q in x
is well-typed when the local type of x specifies a receive, and Pi is well-typed
after setting the local type of x to Li in the typing environment, for each
i. Thus, there is asymmetry: for sending, only one send specified must be
implemented, but for receiving, each receive specified must be implemented.

Central theorem: Static well-typedness implies dynamic safety and liveness.

Match types in Scala The main feature of the Scala type system that we take
advantage of in mpst.embedded is match types. We explain it with an example.
Suppose that we need to write a function to convert Ints and Booleans:
type IntOrBoolean = Int | Boolean // type alias for a union type
def convert(x: IntOrBoolean ): IntOrBoolean = x match {

case i: Int => i == 1; case b: Boolean => if b then 1 else 0 }

However, return type IntOrBoolean is not precise enough. For instance, the Scala
compiler fails to prove that convert(5) && false is safe, as it cannot infer that
convert(5) is Boolean. What is missing, is a relation between the actual type of x
(e.g., Int) and the return type (e.g., Boolean). Match types define such relations.

1. First, we redefine the signature of convert as follows:
def convert[T <: IntOrBoolean ](x: T): Convert[T] = ... // same as before

Thus, we introduce a type parameter T (subtype of IntOrBoolean) and declare
x to be T. Also, we declare the return value to be of match type Convert[T].

2. Next, the idea is to define Convert[T] in such a way that the relation between
the actual type of x and the return type can be inferred, as follows:
type Convert[T] = T match { case Int => Boolean; case Boolean => Int }

The Scala compiler reduces every occurrence of Convert[T] to Int or Boolean,
depending on the instantiation of T (e.g., Convert[Int] is reduced to Boolean).

3. Last, for instance, the Scala compiler correctly succeeds/fails to type-check
convert(5) && false (safe) and convert(5) && 6 (unsafe).

Thus, match types are a “lightweight form of dependent typing” [3], to perform
“type-level programming”. In the remainder, we use the following built-ins:
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1 type Proj[G, R] = G match
2 case End => End
3 case Com[R, q, b] => Send[R, q, Map[b, [E] =>> (Head[E], Proj[Last[E], R])]]
4 case Com[p, R, b] => Recv[p, R, Map[b, [E] =>> (Head[E], Proj[Last[E], R])]]
5 case Com[_, _, b] => MergAll[Map[b, [E] =>> Proj[Last[E], R]]
6 case Loop[x, g] => Loop[x, Proj[g, R]]
7 case Recur[x] => Recur[x]

Fig. 21: Projection in mpst.embedded

– Head[(T1, ..., Tn)] and Last[(T1, ..., Tn)] reduce to T1 and Tn.
– Map[(T1, ..., Tn), F] reduces to (F[T1], ..., F[Tn]). We note that F can

be a type lambda of the form [X] => ... /* do something with X */.

4.2 Embedding MPST into Scala

Global types, local types, processes As explained in Sect. 2, and as shown
in Fig. 8, global types and local types are implemented as classes, while processes
are implemented as methods of class Local. The communication infrastructure
for processes is based on concurrent queues. However, a transport layer for dis-
tributed processes is also possible (orthogonal concern).

Projection Fig. 21 shows match type Proj. It is used to have the Scala compiler
fully automatically and statically compute local types (e.g., line 2 in Fig. 11).

Match type Proj has two type parameters: a global type G and a role R (cf.
G � r). To reduce Proj[G, R], the Scala compiler matches G to a global type con-
structor, and it produces a local type exactly as defined in Fig. 19. By con-
vention, lower case letters in patterns are type variables; they are bound to types
as part of the matching algorithm. For instance, on lines 3–5 in Fig. 21, b is bound
to a product type of the form ((T1, G1), ..., (Tn, Gn)), where each Ti is a data
type, and each Gi is a global type. When b is passed to Map on lines 3–4, it is con-
verted into ((T1, Proj[G1, R]), ..., (Tn, Proj[Gn, R])). Alternatively, when b
is passed to Map on line 5, it is converted into (Proj[G1, R], ..., Proj[Gn, R]),
which is subsequently passed to MergAll; this is a helper match type that reduces
to the full merge of all local types in the product type.

Type checking Fig. 22 shows an excerpt of class Local related to type check-
ing. The idea is to have the Scala compiler reduce match types SendCallback
and RecvCallbacks to fully automatically and statically compute the expected
types of the callback arguments of methods send and recv, given a local type
L. The reduction succeeds, and the actual callback argument is well-typed by
the expected type, if, and only if, the communication action is well-typed by
L exactly as defined in Fig. 20. Otherwise, the Scala compiler reports an
error. In this way, mpst.embedded implements the same MPST typing rules as
in Fig. 20 in terms of Scala match type reduction, and it provides the same
assurances (modulo the “two provisos”; page 8):
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1 class Local[R, L] private (val r: R, val net: Network) extends UseOnce:
2 def send[Q, D](q: Q, d: D, f: SendCallback[Q, D, L]): Local[R, End] = ...
3 def recv[P](p: P, fs: RecvCallbacks[P, L]): Local[R, End] = ...
4

5 type SendCallback[Q, D, L] = L match
6 case Send[R, q, b] => q match
7 case Q => (Local[R, App[b, D]] => Local[R, End])
8 case Loop[x, l] => SendCallback[Q, D, Substitute[l, L, x]]
9

10 type RecvCallbacks[P, L] = L match
11 case Recv[p, R, b] => p match
12 case P => Map[b, [E] =>> (Head[E], Local[R, Last[E]]) => Local[R, End]]
13 case Loop[x, l] => RecvCallbacks[P, Substitute[l, L, x]]
14

15 ... // function loop and type LoopCallback

Fig. 22: Type checking in mpst.embedded (excerpt)

– if, at compile-time, each process is well-typed by its projection,
– then, at run-time, the session of all processes is safe and live,
– modulo linear usage of Local objects (checked dynamically),
– modulo non-terminating/exceptional behaviour (unchecked).

We now explain send and recv. Regarding send, Fig. 20 states that a send is
well-typed if the local type specifies it directly (rule [Send]) or indirectly (rule
[Unfold]). These cases correspond precisely to the two cases in SendCallback:

– Lines 6–7 state that a send is well-typed if the sender, receiver, and data
type match the send of the local type L, and if the callback is a function that
consumes a Local object, parametrised by the selected branch of L, namely
App[b, D]. We note that App[((T1, L1), ..., (Tn, Ln)),Ti] reduces to Li.

– Line 8 states that a send is also well-typed when it is well-typed by the
unfolding of the local type. We note that Substitute[L1, L2, X] reduces to
a version of L1 in which each occurrence of Recur[X] is replaced with L2.

Regarding recv, similarly, Fig. 20 states that a receive is well-typed if the lo-
cal type specifies the receive directly (rule [Recv]) or indirectly (rule [Unfold]).
Due to the asymmetry between sends and receives, SendCallback (singular) re-
duces to a single function type, while RecvCallbacks (plural) reduces to a product
of function types, computed using Map. Besides that, they follow the same ideas.

4.3 Evaluation and Discussion

Compile-time performance To validate the practical feasibility of using
mpst.embedded, we systematically measured the type checking times during non-
incremental compilation of all examples in Sect. 2 and Sect. 3, as well as twelve
additional examples from the MPST literature [7,30,31] and the Scribble reposi-
tory [14].2 This is a representative set of protocols, previously developed by other
2 Run-time performance (e.g., latency/throughput) depends on the transport mecha-
nism for message passing, which is orthogonal to the contributions of this paper.
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Table 1: Type checking times in milliseconds, reported as µ± σ, where µ is the
average (of 31 measurements), and where σ is the standard deviation

protocol type checking
without consistency

type checking
with consistency difference†

Negotiation (Exmp. 5) 1, 399± 118 ms 1, 254± 36 ms −145± 125 ms
Negotiation (Exmp. 9) 1, 299± 85 ms 1, 240± 22 ms −60± 88 ms
Two-Buyer (Exmp. 7) 1, 399± 31 ms 1, 658± 50 ms 258± 59 ms
Three-Buyer (Exmp. 8) 1, 489± 57 ms 1, 728± 50 ms 239± 76 ms

Three-Buyer [7] 1, 341± 57 ms 1, 622± 71 ms 280± 78 ms

OAuth2 Fragment [31] 713± 24 ms inconsistent inconsistent
Rec. Two-Buyers [31] 775± 24 ms inconsistent inconsistent
Rec. Map/Reduce [31] 1, 016± 45 ms inconsistent inconsistent
MP Workers [31] 891± 27 ms inconsistent inconsistent

Game [30] 1, 095± 35 ms 1, 338± 29 ms 243± 46 ms

Adder [14] 763± 21 ms 781± 19 ms 18± 28 ms
Booking [14] 1, 099± 35 ms inconsistent inconsistent
Fibonacci [14] 759± 22 ms 779± 17 ms 20± 28 ms
HTTP [14] 1, 703± 41 ms 1, 838± 77 ms 134± 88 ms
Loan Application [14] 879± 48 ms 1132± 29 ms 253± 56 ms
SMTP [14] 1, 726± 70 ms 2079± 128 ms 353± 146 ms
† The difference between type checking times without consistency µ1 ± σ1 and with
consistency µ2 ± σ2 are reported as µ± σ, where µ = µ2 − µ1 and σ =

√
σ2
1 + σ2

2

researchers (including the protocols in our examples in Sect. 2 and Sect. 3), of
various sizes, that exercise all aspects of classical MPST theory.3

To measure only the protocol-related type checking times, the processes con-
tained almost no computation code; just communication actions in compliance
with the protocol. The measurements were obtained using an Intel i7-8569U pro-
cessor (4 physical/4 virtual cores at 2.8 GHz) and 16 GB of memory, running
macOS 14.0, OpenJDK 18.0.2, and Scala 3.3.1. We ran the measurements with
consistency checking disabled and enabled, to be able to study the difference.

Table 1 shows the results, averaged over 31 runs per protocol. We make two
main observations. First, without consistency checks, the type checking times
seem sufficiently low for the usage of mpst.embedded to be practically feasible:
less than two seconds for the biggest protocol in our benchmark set (SMTP).
Moreover, our measurements were obtained using non-incremental compilation
and, as such, constitute an upper bound on the expected type checking delays
when using incremental compilation. Anecdotally, in our development environ-
ment (Visual Studio Code 1.87 with the Metals 1.30 extension for Scala pro-

3 That is, the theory as originally defined by Honda et al. [16], but presented in the
more recent style of, e.g., Scalas–Yoshida [31], including the full merge operator.
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gramming), when using incremental compilation, the type checking delays were
significantly lower (<100 ms) than those in Table 1, and not disruptive at all.

Second, with consistency checks (i.e., five examples violate consistency; this
was expected), the results show that some overhead is added, but it does not
make the usage of mpst.embedded infeasible (<500 ms). Also, when using incre-
mental compilation, the type checking delays continued to not get in the way.

Experience The implementation of the benchmark set turned out to be, in its
own right, a validation activity to experience whether or not the type checker
catches all mistakes in practice. This is because, until a protocol implementation
is finished, it does not comply with the specification yet. Thus, all until the end,
the type checker reports errors to point out missing pieces. This guidance by
the type checker effectively prevented us from making unintended programming
mistakes, especially when writing the implementations of HTTP and SMTP
(which are the more complicated protocols in our benchmark set). It would be
interesting to try to reproduce these anecdotal findings in a larger user study.

Expressiveness Our benchmark set shows that mpst.embedded is feature-com-
plete relative to classical MPST theory,3 with full merging (e.g., the OAuth2
fragment requires full merge), as intended. Moreover, while the ability to write
generic global types does not add expressive power in the formal sense, it enables
better reuse of global types and serves as an abstraction/composition mecha-
nism: it allows large protocols to be split into separate smaller sub-protocols—
specified as generically as possible to maximise the opportunity for reuse—which
can then be “invoked” from each other with concrete arguments. Such generic
sub-protocols can also be packaged into libraries and shared between projects.

5 Conclusion

Related work Closest to our approach in this paper is the work by Imai et
al. [20]. They developed an internal DSL in OCaml to specify protocols and
verify processes based on MPST. However, their tool does not support all key
aspects of classical MPST as in Fig. 1: it supports only binary choices instead of
n-ary choices (e.g., Exmp. 1, which has ternary choices, is not supported), and it
is not fully automatic (i.e., Imai et al. require the programmer to manually write
extra protocol-specific code to project global types). In contrast, mpst.embedded
supports n-ary choices and is fully automatic.

Another related tool is the Discourje library [15], which offers an MPST-based
internal DSL in Clojure. However, Discourje does all verification dynamically,
whereas mpst.embedded performs all verification statically up-to linearity.

There are four existing tools to combine MPST with Scala: Scribble-Scala
[30], Pompset [6], Teatrino [2], andOven [12]. Table 2 summarises the differences:

– DSLs to specify protocols as global types: Scribble-Scala, Pompset, and
Teatrino are based on the external DSL of Scribble, while Oven is based on
an external DSL for regular expressions.
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Table 2: Comparison of MPST tools for Scala
DSL projection interpretation encoding

Scribble-Scala [30] external syntactic FSMs lchannels
Pompset [6] external syntactic pomsets vanilla Scala
Teatrino [2] external syntactic – Effpi
Oven [12] external semantic FSMs vanilla Scala

mpst.embedded internal syntactic – vanilla Scala

– Projection of global types: Scribble-Scala, Pompset, and Teatrino apply the
classical structural projection operator (defined in terms of the syntax of
global types; Sect. 4.2), while Oven applies a non-classical behavioural pro-
jection operator (defined in terms of the operational semantics of global
types). The latter has additional expressive power to support the usage of
regular expressions as global types [23].

– Interpretation of local types: Different from Fig. 3, Pompset uses partially-
ordered multisets instead of FSMs as an intermediate operational model,
while Teatrino directly encodes local types as APIs in Scala.

– Encoding as APIs: The APIs generated by Scribble-Scala and Teatrino are
built on top of the existing libraries lchannels and Effpi (discussed in more
detail below), while Pompset and Oven do not rely on such existing libraries.

Besides these existing tools to combine multiparty session typing with Scala
(including global types and projection), there also exist libraries to combine
binary session typing with Scala (excluding global types and projection), namely
lchannels [30] and Effpi [32]. Conceptually, as mpst.embedded targets multiparty
instead of binary, it is not really comparable to lchannels and Effpi. Technically,
moreover, lchannels and Effpi do not use match types.

Future work Many extensions of MPST theory have been proposed. We are
keen to explore which of them can be incorporated in mpst.embedded using match
types. For instance, an important feature that we believe is compatible with
mpst.embedded and match types is parameterised MPST with indexed roles as
developed by Castro et al. [5]. Another feature that seems representable using
match types, is MPST with refinements along the lines of Zhou et al. [36]. In
contrast, a feature that seems prohibitively difficult to incorporate, is timed
MPST [4]: match types seem unsuitable to statically offer real-time guarantees.

Data Availability Statement

The artifact is available on Zenodo [21]. It contains: (1) mpst.embedded; (2) the
examples in the paper; (3) reproduction instructions for our evaluation.
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