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This paper presents a framework for the static specification and safe programming of message passing protocols

where the number and kinds of participants are dynamically instantiated.

We develop the first theory of distributed multiparty session types (MPST) to support parameterised

protocols with indexed roles—our framework statically infers the different kinds of participants induced

by a protocol definition as role variants, and produces decoupled endpoint projections of the protocol onto

each variant. This enables safe MPST-based programming of the parameterised endpoints in distributed

settings: each endpoint can be implemented separately by different programmers, using different techniques

(or languages). We prove the decidability of role variant inference and well-formedness checking, and the

correctness of projection.

We implement our theory as a toolchain for programming such role-parametric MPST protocols in Go. Our

approach is to generate API families of lightweight, protocol- and variant-specific type wrappers for I/O. The

APIs ensure a well-typed Go endpoint program (by native Go type checking) will perform only compliant

I/O actions w.r.t. the source protocol. We leverage the abstractions of MPST to support the specification and

implementation of Go applications involving multiple channels, possibly over mixed transports (e.g., Go

channels, TCP), and channel passing via a unified programming interface. We evaluate the applicability and

run-time performance of our generated APIs using microbenchmarks and real-world applications.
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Fig. 1. Distributed and shared memory communications in a role-parametric parallel HTTP downloader.

1 BACKGROUND
1.1 Channel-Based Concurrent and Distributed Programming in Go
Go is a popular industrial systems language.

1
One of its primary design features is first-class

language support for lightweight concurrency on multicore machines. Go offers easy spawning

of parallel coroutines, called goroutines, that are transparently multiplexed over an underlying

set of system threads. Goroutines communicate and synchronize via message passing over typed

channels, designed to alleviate the difficulties of low-level mechanisms such as mutexes, condition

variables and memory barriers commonly used in systems programming. As first-class objects, an

interesting and useful feature is the ability to pass channels over channels.
Go is also well-established in distributed systems; e.g., it is the implementation language of

frameworks such as Kubernetes, Docker and Jaeger. As the aforementioned concurrency features of

Go are specific to shared memory, a significant class of distributed programming in Go is conducted

using channel-based networking libraries via TCP, HTTP, etc. as transports. Developers appreciate

Go since distributed programming in practice often involves local concurrency: goroutines and

channels are effective for dealing locally with the inherent asynchrony of distributed interactions.

We illustrate such an application that integrates shared memory and distributed concurrency as

a running example, a parallel downloader (e.g., HTTP) which we refer to as Pget.
2
Fig. 1 depicts

the components of the application and the communication structures that arise.

(a) There are three categories of participants, one Master (M), n > 0 Fetchers (F ), and one Server (S).
M creates a worker pool of n goroutines to serve as F s, where the value of n is set at run-time,
and shares a Go channel with each to retrieve the data. Each F performs its download task (by

a Get/Res message exchange) with S concurrently via a separate HTTP channel.

(b) When an F finishes its download, it passes toM the data and a continuation channel over the
initially shared Go channel (this pattern is as in the implementation of htcat2).

(c) The passed channel (dotted line) permitsM to relay the next message type in the protocol after

receiving a Data: e.g., to give the F another download task, or to end the goroutine (Done).

Go channels are homogeneously typed: the syntax of channel types is chan T for a given type T.

Channel passing as above (i.e., bundling the continuation channel into the current message) is

a way to affect the causality between the communications of different message types, as a safer

alternative to declaring and allocating all channels upfront: passing the continuation channel as

part of using the “current” channel helps prevent using them out of the intended order.

1
https://golang.org/. Companies using Go: https://github.com/golang/go/wiki/GoUsers. Go success stories: https://github.

com/golang/go/wiki/SuccessStories. Survey of 3,595 Go users: https://blog.golang.org/survey2016-results.

2
Pget is based on htcat (https://github.com/htcat/htcat), a tool for parallelising HTTP GETs written in Go using channels

(and channel passing) and the standard net package, with performance gains compared to curl.
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1.2 Key Programming Challenges
The Pget example demonstrates some of the key challenges faced by distributed programmers in

many engineering languages, including recent languages like Go. As a terminology, we shall refer

to Go channels as shared memory channels, signifying intra-process message passing.

Communication and concurrency errors Go offers convenient primitives for shared memory

channels, but does not offer any language support against classical errors such as deadlocks
(goroutines stuck on mutually blocking inputs). In a recent survey,

1
users perceived this to be the

main challenge in Go: “We asked how strongly people agreed [with] various statements about Go. [...]
Users least agreed that they are able to effectively debug uses of Go’s concurrency features.”
One factor is that Go’s channel types are limited. They do not at heart constrain the direction of

communication;
3
nor reflect the causality of communications across separate channels, which

also gives rise to reception errors (receiving an incorrect message type). These problems apply

similarly to uses of distributed channel libraries, that often are effectively “untyped” in practice.

Disparate communication abstractions Key to understanding an application like Pget as a
whole is the choreography of I/O behaviours by every participant across the multiple channels. At

the specification level, there is first the question of how to statically specify protocols where the

number and kinds of participants are dynamically determined: we refer to such protocols as having

dynamically-instantiated communication structures. In practice many protocols are only informally

specified, itself a cause of errors. This problem is compounded at the implementation level, where

disparate primitives/libraries are used to implement heterogeneous parts of an endpoint (e.g., shared

memory and HTTP in F )—even with an adequate specification, the programming abstractions do

not guide a correct implementation of the overall application protocol nor facilitate its verification.

1.3 Multiparty Session Types: Motivations
Towards addressing these challenges, in this paper, we present a new, practical framework for the

static specification and safe implementation of distributed Go programs, centred around a pivotal

extension of the theory of multiparty session types (MPST) [Coppo et al. 2016; Honda et al. 2016].

Our general motivation for using MPST to address the challenges in § 1.2 is as follows.

In common practice, channel-oriented communications programming, embodied by standard

networking libraries in many languages (including those with static data typing), is often effec-

tively “untyped”: for example, standard TCP socket APIs simply expose a raw byte stream in each

communication direction. Higher-level and more recent facilities, such as service-oriented APIs and

frameworks (e.g., SOAP, REST or Apache Thrift) and Go channels, can offer the improvement of

message-type safety: the messages to be sent and received can be statically checked to be of known

types. However, this still falls short of what is ultimately desired for communications-oriented

programming in general: protocol compliance. The aforementioned facilities mask this limitation

to certain extents: service-oriented frameworks essentially hardcode interaction structures to call-

return patterns, thus reducing protocol compliance (for individual invocations) to message-type

safety; Go channels are homogeneously typed, and often used with additional restrictions on the

communication direction (via ad hoc casting of channel types).

The above limitations of current practices are readily exposed in many applications. For example,

non-trivial service-based applications often involve, as a whole, the composition of multiple, smaller

services: e.g., invoke service A then B, which in turn uses either C (then the protocol is repeated
from the start) or D, and so on; such scenarios are increasingly promoted by architectures such as

microservices that favour fine-grained service decomposition. In the setting of Go channels, such

interaction structures require multiple independent channels to cater for the range of data types

3
Go’s directed channel types (<-chan T or chan<- T) are derived by ad hoc casting, and offer no guarantees against deadlock.
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and communication directions. In contrast to the safety benefits of data typing enjoyed for “local”

computations, programming of such communications suffers from errors arising from protocol
violations (i.e., non-protocol-compliant I/O actions): despite message-type safety, these include the

classical reception errors (receiving an out-of-order message, e.g., an incorrect invocation of B before

A), deadlocks (a wait-for cycle of input dependencies) and orphan messages (“leftover” messages).

The idea of MPST is to detect such errors at compile-time through static typing.

The rest of this paper summarises our contributions (§ 2), demonstrates our work through the

running examples (§ 3), and presents our theory (§ 4), implementation (§ 5) and evaluation (§ 6).

Our Supplement4 gives additional examples and detailed proofs.

2 OUR CONTRIBUTIONS
2.1 In a Nutshell
(1) We develop the first theory of MPST to support role-parametric protocols in the traditional

distributed spirit of MPST, including proofs of decidability (inferring “role variants”; checking

well-formedness) and correctness of projection; § 2.2 details this contribution. Our theory is

directly motivated by Go applications, but the foundations are independent of Go. Our ap-
proach thus also applies to other settings where shared-memory and distributed channel-based

communication can be mixed (e.g., Rust).

(2) We implement our theory to give the first practical toolchain for MPST-based programming

in Go. Our toolchain generates lightweight, typed APIs for users to implement the endpoint

programs. Our toolchain is also the first to support practical programming of role-parametric
MPST, targeting a language such as Go (cf., dependently typed session π -calculus). It ensures a
statically well-typed endpoint program (i.e., by native Go type checking) will never perform a

non-compliant I/O action w.r.t. to the run-time instantiation of the role-parametric protocol.

(3) Besides safety, we confer programmatic benefits of MPST to Go. Our toolchain enriches channel-

over-channel passing in Go to session delegation (session-typed channel passing). Session code

written using our generated APIs is also transport-independent: switching and mixing transports

(e.g., Go channels, TCP) is safe and set by a single API argument.

(4) We demonstrate the applicability of our framework and run-time performance of our generated

APIs by specifying and implementing a range of use cases from parallel algorithms and Internet

applications, including modifying existing Go implementations of real-world applications—e.g.,

the overheads of our APIs are mostly negligible in programs adapted from [Gouy 2017].

We clarify the conditions for concrete applications of our practical framework:

• We target message passing applications where message delivery is reliable and order-preserving
between each pair of participants in each direction (e.g, TCP, or FIFOs in shared memory). Our

core theory is based on the standard asynchronous model of MPST, i.e., non-blocking outputs

with blocking inputs, but our results also hold for synchronous communications.

• Our framework is top-down from a source protocol specification, which must be well-formed

according to our definitions (§ 4). The expressiveness of our framework is attested by practical

examples (§ 3), formal examples (§ 4.2), and a range of real-world applications (§ 6.2).

2.2 The Advances of this Paper to MPST
MPST basics. Multiparty session types (MPST) is one of the approaches in the field of be-

havioural type theory [Ancona et al. 2016; Hüttel et al. 2016] proposed to address the challenges

discussed in § 1.2. Fig. 2 (a) depicts the standard top-down methodology of the originating MPST

4
Technical report 2018/04, Department of Computing, Imperial College London.

https://www.doc.ic.ac.uk/research/technicalreports/2018/#4
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Fig. 2. Contrasting (a) the traditional top-down, distributed view of MPST [Coppo et al. 2016; Honda et al.
2016]; and (b) the “centralised” view of existing role-parametric MPST systems.

systems in the π -calculus [Coppo et al. 2016; Honda et al. 2016], which we illustrate by a small

example: a ring communication structure between three Workers,W1,W2, andW3.

G = W1→ W2 :T . W2→ W3 :T . W3→ W1 :T . end

G is a global type: a specification of the communication structure (i.e., protocol) between the

participants (abstracted as roles) from a global perspective.G saysW1 first sends a T message toW2,

who then sends a message toW3, who finally sends a message toW1. For each role r , the global
type is then projected to a local type, that describes the localised I/O actions from r ’s perspective:

L1 = W2 ! T . W3 ? T . end L2 = W1 ? T . W3 ! T . end L3 = W2 ? T . W1 ! T . end

L1 saysW1 should first send (!) a T message toW2, followed by receiving (?) a T message fromW3;

the W2→ W3 interaction is transparent toW1. Local types are used to statically type check endpoint

programs (formally, session π -calculus processes) implementing these roles: intuitively, the typing

checks protocol compliance by matching the structure of the I/O actions in the local type to

a correspondingly structured usage of I/O primitives in the program. A well-typed system of

processes, one for each role, is guaranteed free from reception errors and deadlocks.

A crucial design point of MPST is that projection promotesmodularity: it decouples the program-

ming (and verification) of each endpoint. This is especially important for distributed programming,

which in addition to inter-process communications, may also be characterised by endpoints being

separately implemented by different programmers, using different techniques (e.g., multithreaded,

event-driven, etc.), technologies (e.g., client vs. server), and languages.

Addressing an open problem. One of the biggest challenges in MPST is expressiveness: essen-
tially, to attain the strong static guarantees that MPST aims to provide, global types are syntactically

limited and subject to conservative well-formedness and projectibility constraints (i.e., projection is

a partial operator).

A crucial practical limitation of MPST concerns the lack of support for role-parameterisation,
i.e., global and local types where roles are parameterised by indices. For instance, it should be

possible to write a single global type for a ring communication structure of any size, instantiated

dynamically; other applications include those involving parameterised worker/service instantiations

(e.g., Pget), and many parallel algorithms. The original theory of MPST does not support such

role-parameterisation, and while attempts have been made to extend the theory, these extensions

ultimately had to sacrifice (1) general decidability of type checking and (2) modularity of projection.

This paper presents a new theory that is the first to support role-parametricity in MPST without

the previous compromises, maintaining both decidability and modularity. Due to our new theory,

we are able to contribute the first practical toolchain for role-parametric, distributed, MPST-based

programming in an engineering language such as Go without relying on dependent types at the

implementation level. Our framework guarantees only I/O actions that are compliant with the

run-time instantiation of the role-parametric protocol are performed.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.
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Comparison. To further clarify our contributions, we illustrate the approach of Deniélou et al.

[2012]; Yoshida et al. [2010], the initial theoretical works that formulate a dependently typed MPST

for protocols with indexed roles by adding a primitive recursion operator R to types and processes.

The generalisation of the above example to a ring between k ≥ 2 participants can be written as:

G = Πk:I .(RG ′ λi.λx.G ′′) G ′ = W[k]→ W[0] :T . end G ′′ = W[k-i-1]→ W[k-i] :T .x
where I is the parameter domain (≥2), i is an index variable, and x is a recursion variable. The use

of R in G can essentially be read as: repeat G ′′ for i from k-1 to 0, then finish by doing G ′.
In contrast to standard MPST, however, Fig. 2 (b) shows a corresponding top-down view of the

methodology promoted by these works. G is projected to a single local type (called the generic
projection) that encompasses the entire range of different index-value dependent behaviours as one.

L1..n = R (if p = W[k] (W[0] ! T . end) else if p = W[0] (W[k] ? T . end) else end)
(λi.λx.if p = W[k-i-1] (W[k-i] ! T .x) else if p = W[k-i] (W[k-i-1] ? T .x) else x)

As the R operator iterates through the index range k..0 for each participant p, the embedded

index expression cases will spell out the three distinct behaviours present in the ring: those of W[0],

W[1..k-1], and W[k]. We note that supplying the (valid) index domain, i.e., k ≥ 2, in their system fixes
the type family—the intuitive case of a two-party ring requires declaring a separate type family (cf.,

k= 1 is invalid in the above). Fixing the (finite) domain is required for decidability of type checking.

We now give the same example in our framework. The global type is:

GRing = W
1

=⇒=⇒ [1..k] : T . W[k]→ W[1] : T . end

where
1

=⇒=⇒ denotes a parameterised pipeline structure along the specified interval, i.e., W[1]→ W[2]...
W[k-1]→ W[k]; it is syntactic sugar (§ 4.2) for an instance of our MPST-oriented foreach construct:

foreach W{i1:1..k-1,i2:2..k} do W[i1]→ W[i2] : T . cont (cf. the generic R). Our toolchain statically

determines there are three variants ofW , with decoupled projections:

LW[1]
Ring
= W[2] ! . W[k] ? LW[2..k-1]

Ring
= W[self-1] ? . W[self+1] ! LW[k]

Ring
= W[k-1] ? . W[1] !

(We omit the Tmessage labels and end.) self denotes the run-time value of the local process identifier.

From this single specification, the toolchain also determines the two valid endpoint families: that
comprising variants LW[1]

Ring
and LW[k]

Ring
(when k = 2), and when all three are involved (k> 2).

3 METHODOLOGY OVERVIEW
3.1 Go Basics
We first summarise some basic Go features needed to understand our approach and code examples.

Types and variables. The following is a type declaration for a defined type (left), a variable
declaration (centre), and a shortened declaration (right):

type Init struct { Err error; id uint64; Ept *S_1to1 } var data Data proto := Pget.New()

The left side defines a struct type named Init, that is a typed record with fields Err of type error,

id of uint64 and Ept of type *S_1to1 (i.e., a pointer type with base type S_1to1). The declaration in

the centre creates a variable data of type Data, automatically initialised to the zero value of that
type (e.g., nil for interfaces and pointers). The right side is a shortened declaration for variable

proto whose type and initial value is given by the expression Pget.New().

Methods and interfaces. A method is a function with a receiver, i.e., a value upon which the

method is invoked. The following is a method declaration (left) and a method call (right):

func (c *Foo) Job(a []Job) *M_3 { /* Method body omitted */ } y := x.Job(myJobs)

The left side declares a method Job, with receiver type *Foo, a parameter a of type []Job (method/

type names are unrelated), and result type *M_3. Arguments are always passed by value. An interface
specifies a set of methods; a type with a superset of methods implements the interface implicitly.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.
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Fig. 3. Main toolchain stages: role-parametric global protocol specification, projection onto a role variant,
and distributed Endpoint API generation.

type Bar interface { m1(); m2() } func (b *Baz) m1() { } func (b *Baz) m2() { }

The left side defines an interface type Bar; the right side implements it for the base type Baz.

Package aliases. It is useful to note that Go allows packages (e.g., our generated APIs) to be

imported under an alias. This feature allows users of our APIs to locally alias the default generation

names, e.g., import S "github.com/.../pget/Proto1/S_1to1" aliases S_1to1 as S.

3.2 Distributed, Role-Parametric MPST for Go: Overall Methodology – Pget
We demonstrate our framework by using our toolchain, depicted in Fig. 3, to work through Pget

(§ 1.1). For practical protocol specifications, we implement our new theory of role-parametric MPST

as an extension to Scribble (http://www.scribble.org/), an existing protocol language based on

standard MPST [Coppo et al. 2016]. From the spec, our toolchain generates lightweight APIs that

safely prescribe the I/O behaviour of each role variant (endpoint kind) as a whole, i.e., by capturing

the causality between I/O actions conducted over otherwise separate underlying channels.

Global protocol. The basic scenario comprises a Master (M) coordinating K Fetchers (F) to down-

load a file from an HTTP Server (S). The original project2 upon which Pget is based implements the

former two, to interoperate with standard third party Web servers (e.g., Apache). A global protocol,
however, specifies the overall application from a neutral perspective: provided the interaction

structure can be expressed in terms of (MPST-based) message passing, the details of how any indi-

vidual endpoint may be implemented remain abstract at this level. This allows for the specification

of multiparty applications formed (or partly formed) by a composition of smaller services (e.g.,

traditional RPCs), similarly to the role of the HTTP server here.

Fig. 4 (top) lists a global protocol Pget written in our extended Scribble. We flesh out the de-

scription from § 1.1 but keep certain aspects simple for conciseness; subsequent examples will

demonstrate further features. We capture the channel mobility in Pget using session-typed channel

passing, called session delegation in the literature. The parameterised communication structure in

this example is also representative of protocols in other applications (e.g., § 6.2).

The protocol declares the three base role names M, F and S. An asynchronous interaction is written,
e.g., Job from M to F[1,K];, where M is the sender-side, and F[1,K] the receiver-side; F[1,K] stands
for the set of F in the inclusive, non-empty interval [1, K], where the value of K is to be supplied

when the session is initiated at run-time. By default, K is taken to be in N≥1: our well-formedness

conditions (§ 4.5) determine that the only valid instantiations of K are values ≥1 (specifically, well-

formedness dictates that every interval must be non-empty); the validity of concrete parameter

values is checked at run-time. Job is the message signature, declared in the Scribble module by, e.g.,

sig <go> "messages.Job" from "github.com/.../pget/messages" as Job;

where messages.Job is a Go data type that implements the Scribble API for data serialisation.

We omit the similar declarations for the other messages. All together, this interaction specifies a

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.
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1 global protocol Pget(role M, role F, role S) {

2 Head from F[1] to S; Res from S to F[1]; // (1) Obtain metadata from Server

3 Meta from F[1] to M; Job from M to F[1,K]; // (2) Allocate Fetcher download tasks

4 Get from F[1,K] to S; Res from S to F[1,K]; // (3) Perform downloads

5 Data from F[1,K] to M; Sync@A from F[1,K] to M; // (4) Gather data and control channels

6 } // Sync@A is the local type projection of Sync onto A, i.e., a delegation

7 global protocol Sync(role A, role B) { choice at A { Done from A to B; } // Choice: terminate B (i.e., Fi ) or ...

8 or { ... } }

1

S!Head S?Res M!Meta M?Job S!Get S?Res M!Data M!Sync@A
1

F[1]?Meta F[1,K]!Job F[1,K]?Data F[1,K]?Sync@A

1

F[1]?Head F[1]!Res F[1,K]?Get F[1,K]!Res

1

M?job S!Get S?Res M!Data M!Sync@A

M

F1

F2..K

S

K
=
1

K
>
1

Fig. 4. Pget example from § 1.1 in our extended Scribble: (top) role-parametric global protocol; (bottom) the
projections onto each role variant, M, F1 and F

2..k , represented as communicating FSMs.

scatter of Job messages (possibly with different values) from the single sender to the K receivers.

Similarly, Get from F[1,K] to S; specifies a gather of K Get messages from the Fs by the single S.

Singleton-indexed scatters/gathers coincide as a basic point-to-point interaction.

The message signature of the delegation action is Sync@A (adopting the syntax of Scalas et al.

[2017]), which denotes passing a channel for the A endpoint in the Sync protocol (obtained through

projection; see below). For clarity, we name M as A and F as B in Sync (M and F could be reused); and

give only the case for terminating the B/F goroutine by sending a Done on the delegated channel.

Projection. The distinct behaviours associated with each role name, i.e., the role variants, are
inferred from how the role names are indexed and used in the protocol body. A role name that is

never indexed is implicitly indexed over a singleton constant interval (whose value is irrelevant), as

is the case for M and S. Our toolchain infers from the indices that the definition of Pget induces four
role variants, i.e., four kinds of endpoints: M, F1, F2..K and S. Fig. 4 (bottom) depicts the projection of

Pget onto each: our implementation uses a representation of our index-parameterised local types

(§ 4.2) based on communicating finite state machines [Brand and Zafiropulo 1983; Deniélou and

Yoshida 2012] that correspond straightforwardly to the syntactic types. In our setting, the FSMs

communicate via scatter/gather I/O (subsuming basic point-to-point messaging), and may feature

nesting of FSMs inside states (demonstrated in § 3.3). The toolchain also determines these variants

form two valid families: one has M, F1 and S (K = 1), and the other has all (K > 1).
The initial states are marked 1. For instance, in the FSM for M, the first action F[1]?Meta receives

the Meta message from F[1], followed by F[1,K]!Job that scatters Jobs to the K Fs. Then M waits

until it has gathered a Data from each F, and likewise the delegated control channel of type Sync@A.

API types generation. The purpose of the API generation is to capture a projection as Go type

definitions to guide programming of the target variant, and impart safety assurances through a

combination of type checking and the functionality of the underlying generated code. It is possible

to generate various kinds of API, suited to different programming styles—a benefit of our distributed

framework (cf. previous “monolithic” approaches Ng et al. [2015]; Yoshida et al. [2010]) is that

different endpoints could be separately implemented using different APIs: we present the most

direct API generation from a projection, that is close to channel-based programming in common

practices (e.g., TCP sockets, Go channels) and to the session π -calculi in MPST formalisms.
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State type (with nested peer/action types) Method name and signature (parameters, result type)

State Peer(s) I/O action Message label/values, aux. functions Successor

M_1 F_1 Receive Meta(a *Meta) *M_2
M_2 F_1toK Scatter Job(a []Job) *M_3
M_3 F_1toK Gather Data(a []Data) *M_4
M_4 F_1toK GatherAndSpawn Sync_A(run func(*A_1) End_A) End_M

1 func mainM(req HttpReq, K int) {

2 proto := Pget.New()

3 M := proto.M.Kgt1.New(K) // API for K>1

4 ss1 := shm.Listen(8888+1); defer ss1.close()

5 go mainF1(req, 8888+1)

6 M.F_1.Accept(ss1)

7 for i := 2; i <= K; i++ {

8 ssi := shm.Listen(8888+i); defer ssi.close()

9 go mainF_2toK(req, 8888+i)

10 M.F_2toK.Accept(i, ssi) // Supported by K>1 API

11 M.run(runM) // runM: func(*M_1) End_M

12 } }

14 func runM(m *M_1) End_M {

15 var meta Meta; var data Data

16 // F[1]?Meta. F[1,K]!Job. F[1,K]?Data. F[1,K]?Sync@A

17 return m.F_1 .Receive .Meta(&meta).

18 F_1toK.Scatter .Job(split(&meta)).

19 F_1toK.Reduce .Data(&data, agg).

20 F_1toK.GatherAndSpawn.Sync_A(runA)

21 }

22

23 func runA(a *A_1) End_A {

24 return a.B.Send.Done() // Just do Done, for brevity

25 }

Fig. 5. (top) Go API types and I/O method signatures generated for M in Pget; (bottom) an M endpoint
implementation using the generated API.

In short, the API generation takes the FSM for a target role variant and (i) reifies each state as a

state-specific Go type, that (ii) offers a generated I/O method for each of the transitions from that

state; the result type of each I/O method is set to the successor state of that transition. We refer to

instances of the state-specific types as state channels, and they are created only by the API itself.

A state channel API is basically an interlinked set of lightweight, variant- and state-specific type

wrappers that abstract from the concrete I/O actions on the underlying channels (Go channels,

TCP, etc.) to the various participants of a multiparty communication session.

Fig. 5 (top) summarises the state channel API generated for M. On the left, ‘State’ is the “top-level”

type for each protocol (FSM) state. ‘Peer’ is a type that denotes the valid interaction peers at each

state, accessed as a field of State; similarly the valid ‘I/O action’s are also denoted by types accessed

as fields of Peer. On the right, the valid message types for each action are offered as methods on

the action types, taking the message values as parameters, and resulting in the successor state type.

The various actions (e.g., Receive, Scatter) and parameters are generated based on the FSM state.

As an example, assuming variables m and meta of the initial state type M_1 and message type meta,

respectively, the first I/O action in an M program may be guided by the API as:

m.F_1.Receive.Meta(&meta) which can be read as: on channel m, do F1? Meta.

Since the result type of I/O methods is used for successor states, input methods like Receive/Gather

are generated to store the deserialised message values into the pointer arguments (e.g., meta),

following idiomatic usage of standard Go APIs (e.g., encoding/gob). The alternative of returning

a pair of the successor state and the deserialised values hinders fluent call-chaining. Variable

declarations in Go allocate memory initialised to zero values (and are thus safe to read).

We highlight that the I/O method parameters relate only to messages: all index computations

and mappings to underlying channels are internalised within the API from the source specification.

For simplicity, we use the default type/method naming as illustrated; users may instead use Go

package/type aliases (each state has a separate subpackage; cf. § 3.1) in the local program, or supply

name annotations in the protocol—i.e., specific naming schemes are not a crucial detail.

Endpoint programming. Fig. 5 gives an example Go implementation of M using the API gener-

ated as above. We assume Go type definitions (e.g., Get, Res) for each message signature as described

earlier, and a HttpReq helper type that holds the various field values of a HTTP request.
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Endpoint initiation An endpoint implementation typically starts by establishing a new session

for the target protocol, signified by instantiating the generated API frontend type: here, proto

of type Pget. This is used to create a new Endpoint by using the appropriate constructor from a

generated “menu” of nested type functions: e.g., line 3 in Fig. 5 uses the constructor for M under

the K_gt1 (K > 1) family. An incompatible K argument for this family is a run-time error: a check

on the implicit constraint (derived from the protocol) is built into the generated method (§ 5.3).

An Endpoint is first used to establish communication links to its peers by the generated connection

methods Accept (lines 6 and 10) and Dial (illustrated below), similarly to standard Socket APIs (e.g.,

tcp or unix via the net package), with the additional option to use shared memory Go channels

(shm package) as a transport; in Pget, for instance, the Master and the Fetchers communicate via

shared memory, as indicated by the usage of the shm package on Lines 4 and 8. The K > 1 API
selected for M in this code supports (i.e., allows by static typing) the Accept (and Dial) method for

F2..K (line 10); whereas the K = 1 API has connection methods only for F1.

After initiating the session, we use a generated runmethod on the Endpoint to conduct the protocol

by supplying a func(*M_1) End_M, where M_1 is the initial state channel type of this endpoint, and
End_M is the terminal type. We note the result is set to the End type even for non-terminating

endpoints (i.e., persistent sessions)—since no generated I/O method will actually return a state

channel of this type, this signifies the function should be non-terminating.

Protocol implementation Intuitively from an FSM view, an implementation of the run argument

function using the state channel API must observe one simple usage condition: on the current state
channel, call exactly one I/O method to obtain the next, up to the terminal state (if any). Following
this, the implementation, e.g., runM (line 14), is thus guided by the static type of each state channel

as the programmer works through the protocol. For a given session instance, the only way to

obtain a value from the API that statically satisfies the End result type of a (terminating) endpoint

is to reach and perform a generated I/O method that corresponds to a terminal transition.

We have used the API in a concise call-chaining style; the user may also use the generated types

in more explicitly imperative (e.g., protocol steps as sequenced statements) or “functional” (e.g.,

via functions with state type parameters and result) styles, interleaved with other application

operations as needed. The Reduce method on line 19 is an additionally generated convenience

variant of the basic Gather (Fig. 5, top). We omit the simple definitions of functions split and agg.

Transport abstraction and delegation Endpoint programs for each variant are implemented

in a similar fashion. Assuming an F1 Endpoint object created using the generated API, we may

find in a preamble for F1:

F1.M.Dial(shm.Client, "localhost", portM); F1.S.Dial(tcp.Client, req.Host, req.Port)

F1 is used to connect (Dial) to M and S on shared memory and TCP transports, respectively.

Starting from the initial state channel (below, f), the programmer can rely on the API to guide the

way through the multiparty protocol for F1 (cf. its FSM, Fig. 4) as a whole, correctly dispatching

the interleaved I/O operations with M and S on the underlying shm and tcp channels:

// Assuming vars req:HttpReq, res:Res, job:Job, etc., F1 does: S!Head. S?Res. M!Meta. M?Job. ...

f. S.Send.Head(req.Head()). S.Receive.Res(&res). M.Send.Meta(res.Meta()). M.Receive.Job(&job). ...

Our API generation takes advantage of cheap goroutine spawning to offer various convenience

methods for delegations. In the run method of the delegation sender, i.e., F1:

// New Sync session // Spawns B goroutine // M!Sync@A.end -- i.e., delegate 'a' to M

... proto := Sync.New(); a := proto.Shm.A.New(runB); return f8.M.Send.Sync_A(a)

The second step is a Scribble-Go API facility for establishing shared memory sessions: the New

constructs an A endpoint of a new session for the Sync protocol (Fig. 4), while spawning a goroutine

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.



Distributed Programming using Role-Parametric Session Types in Go 29:11

1

1

F[1]?Head

F[1]!Res

F[i]?Get F[i]!Res
i:1,K

S
1 func runS(s *S_1) End {

2 var head *Head

3 return s.F_1.Receive.Head(head).

4 F_1.Send.Res(Res.New(head)).

5 Foreach(nested) }

7 func nested(i int, s *S3_1) S3_End {

8 var get *Get

9 return s.F_i.Receive.Get(get).

10 F_i.Send.Res(Res.New(get))

11 }

Fig. 6. Projection and example user code for S in the revision of Pget using foreach.

for the implementation function supplied for each of the other endpoints (i.e., runB for B); shm

channels are implicitly created between each endpoint. Assuming f8 is of the penultimate state

type for F1, the Send then delegates the state channel a to M, satisfying the local type M!Sync@A.

The GatherAndSpawn in M (Fig. 5, line 20) is generated for receiving channels: it implicitly spawns the

supplied function, typed from the received state to End, as a goroutine for each received channel.

State channel linearity and safety guarantees The use-exactly-once (i.e., linear use) con-
dition of state channel APIs means a program should never reuse a state channel instance: as
a default, the API generation inlines minimal run-time checks against repeat channel use into

the API, though our examples illustrate how call-chaining may help avoid linearity errors by

keeping intermediate channel values implicit. But regardless of channel linearity, a generated API

guarantees that an endpoint implementation never performs a non-compliant I/O action w.r.t.

to the run-time instantiation of the parameterised protocol, up to premature termination (e.g.,

failures). We discuss linearity, options for static linearity, and our safety guarantees in § 5.4.

3.3 Pget – Revised using foreach (Role-Parametric Subprotocols as Nested FSMs)
Like the original program, an MPST-based (re-)implementation of the client side of Pget (M, F1 and

F2..K) is interoperable with a third-party S such as Apache. However, our framework equally allows

to implement an S that would be interoperable with the original client (and our Scribble client).

The specification in Fig. 4 has: Get from F[1,K] to S; Res from S to F[1,K];. As depicted there,

the projection onto S results in a gather from all Fs (F[1,K]?Get) and a scatter to all Fs (F[1,K]!

Res). In practice, the more desirable behaviour is for S to serve the Get-Res exchange with each F

concurrently. This may be specified via our foreach extension to Scribble, that allows to express a

form of role-parametric subprotocols: we can replace line 4 in Fig. 4 by

foreach F[i:1,K] { Get from F[i] to S; Res from S to F[i]; }

Fig. 6 depicts the projection by our toolchain onto S: the default behaviour is to repeat the nested

FSM for i:1..K in sequence. The same FSMs and APIs are generated for F1 and F2..K as in Fig. 4.

Fig. 6 (right) gives an implementation of S using the default foreach API generation. The basic

API generation for a state s with a nested FSM is to generate a Foreach method, that on entering s
first executes the subprotocols to completion: it takes the nested behaviour as a first-class function,

and performs it sequentially over the parameter range [1,K] (implicit within the generated API). In

general, Foreach then returns an intermediary value for performing the transition out of s; in this

example, it directly returns End. When parameterised variants within a foreach do not interact with
each other, however, an additional method is generated that alternatively performs the subprotocols

in parallel. As desired of S above, this allows by replacing lines 3–5 in Fig. 6:

return s. F_1.Receive.Head(head). F_1.Send.Res(Res.New(head)). Parallel(nested)

The Parallel method spawns a separate nested goroutine for each parameter value.

Further examples. We demonstrate protocol branching and recursion in a range of later exam-

ples, in formal notation (e.g., Ex. 4.4, Ex. 4.8 in § 4.2) and our Go APIs (e.g., Fig. 13 in § 5.3). An

implementation of F1 and other larger examples are in the Supplement
4
(e.g., § I.1.3, § I.2, § IV.1.2).
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E ∈ E ::= E1+E2 | E1-E2 | a | k D ∈ D ::= E1..E2 a ∈ A k ∈ K i ∈ I x ∈ E ∪ I
G ∈ G ::= r1[x1]→ r2[x2] :{ℓj .G j }j∈J | foreach R {i j:D j }j∈J do G1 ;G2 | cont | rec X G | X | end

L ∈ L ::= r [x ] !{ℓj . Lj }j∈J | r [x ] ?{ℓj . Lj }j∈J || foreach R {i j:D j }j∈J do L1 ; L2 | cont | rec X L | X | end

Fig. 7. Syntax of rank expressions (E ∈ E), intervals (D ∈ D), global types (G ∈ G), and local types (L ∈ L)

4 THEORY
Our new theory generalises the original MPST [Coppo et al. 2015; Honda et al. 2016]. It consists of

the following contributions: § 4.1 – an abstract algebra of ranks to index role names, which subsumes

index domains in existing parameterised MPST approaches; § 4.2 – languages of parameterised

global types and local types, to specify communication patterns among indexed roles from a global

perspective and a local perspective, using a new foreach construct; § 4.3 – the first static inference
procedure for role variants; § 4.4 – a new projection operator that produces local types for role

variants, based on a global type; and § 4.5 – theorems that certify role variant inference is decidable,

checking well-formedness is decidable, and projection is correct (i.e., the set of local types projected

from a well-formed global type is equivalent to the global type; this implies safety).

4.1 Roles and Ranks
Roles. Let R denote the set of all role names, ranged over by r (and R over sets of role names).

Every role name identifies a role that individuals (i.e., endpoint programs, e.g., goroutines) enact in

a protocol. For instance, the role names in the Pget protocol are M for Master, F for Fetchers, and S

for Server. Our theory allows every single role to be enacted by multiple individuals.

Ranks. Let A denote the set of all ranks, ranged over by a. Every rank identifies an individual

among the possibly many that enact the same role (cf. ranks in MPI; principals in Wysteria [Rastogi

et al. 2014]), through indexed role names. For instance, F[3] identifies the third Fetcher.

Our theory is parametric in A, meaning we do not fix a specific set of ranks. Instead, more

abstractly, the only structure we assume of A is the existence of an operator +, a constant 0, and

relations ⪯ and <, such that: ⟨A,+,0⟩ is a torsion-free abelian group; ⟨A,⪯⟩ is a partially ordered

set; ⟨A,<⟩ is a strictly totally ordered set; + preserves ⪯ and <; first-order formulas over ⟨A,+,0,⪯⟩
are decidable; and the set of ranks between any ranks a1 and a2 under ⪯ (i.e., {a | a1 ⪯ a ⪯ a2}) is
finite and enumerable. If these conditions are satisfied, we call ⟨A,+,0,⪯,<⟩ a rank structure. The
Supplement,

4
§ II.1 motivates the need for these conditions.

Example 4.1 (1d). The set of all integers Z, with the standard integer addition for +, and with

the standard non-strict and strict integer orders for ⪯ and <, is a rank structure; ⟨A,+,0,⪯⟩ yields
linear integer arithmetic, which is decidable.

Example 4.2 (2d). The set of all pairs of integers Z × Z, with coordinate-wise addition for +, with

the non-strict product order for ⪯, and with the strict lexicographic order for <, is a rank structure;

⟨A,+,0,⪯⟩ can be encoded in linear integer arithmetic, which is decidable. A = Z × Z enables

indexing role names with 2d coordinates, for matrix and mesh protocols; see Ex. 4.6, 4.7.

4.2 Global Types and Local Types
Preliminaries. Global types specify communication patterns among a possibly unknown num-

ber of individuals from a global perspective. We start with some preliminaries.

• We assume a set K = {k1,k2, ...} of all parameters, ranged over by k .
• We define the set E of all rank expressions, ranged over by E (Fig. 7, first line). If a rank expression

contains parameters, it is open; otherwise, it is closed.
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• We define the set D of all intervals, ranged over by D (Fig. 7, first line).

• We assume a set I = {i1,i2, ...} of all index variables, ranged over by i . We use index variables to

iterate over intervals, denoted as i:D. Let E ∪ I denote the set of all indices, ranged over by x .

iter. i1 i2 body after substitution

1 1 2 W[1]→ W[2] : Val . cont
2 2 3 W[2]→ W[3] : Val . cont
... ... ... ...

7 8-1 8 W[8-1]→ W[8] : Val . cont

GPipe = foreach W{i1:1..k-1, i2:2..k} do
(W[i1]→ W[i2] : Val . cont) ; end

Fig. 8. Table (k = 8) for the iteration domain
in the Pipeline global type

Global types. Fig. 7, second line, shows the syntax

of global types. r1[x1]→ r2[x2] :{ℓj .G j }j ∈J denotes an

asynchronous communication of a message labelled as

ℓj from sender r1[x1] to receiver r2[x2], for j ∈ J (chosen
by the sender), followed by G j ; as the syntax of message

labels is irrelevant in our theory, we leave it unspecified.

We omit curly brackets if J is a singleton; also, if a role
is enacted by only one individual, we omit its index (e.g.,

we write M instead of M[0] for Master). rec X G denotes

recursion; end denotes termination.

foreach R{ii:D j }j ∈J do G1 ;G2, the key novelty of our

language, denotes a loop of the communications specified

in body G1, followed by continuation G2; cont indicates

the loop should continue with the next iteration. The iteration domain of foreach is specified by

R{i j:D j }j ∈J , where R denotes a non-empty set of role names, and where every D j has the same

length; it essentially constitutes a “table”, where “columns” correspond to index variables, “rows”

to iterations, and the “cell” in column i j , row u, contains the u-th rank in D j (sorted by <). The
intervals are iterated over in lock-step: the idea is that in the u-th iteration of the loop, at run-time,

individuals communicate with each other as specified in G1 after substituting r [a] for r [i j ], for
every r ∈ R, and where a is the corresponding rank in the table. For instance, Fig. 8 shows the

table for the iteration domain in the Pipeline global type. By definition (i.e., the conditions on rank

structures, plus every interval has a lower and upper bound), every interval is finitely enumerable.

The bounded “counting” aspect of our foreach is inspired by dependent type theories and the

primitive recursion operator used in previous work (§ 2.2). However, a unique feature of our MPST-
oriented foreach is that it essentially iterates over indexed role names (W[1],W[2], ...) instead of over

“naked” indices (1,2, ...; cf. primitive recursion). Leveraging this role-based information is key to

facilitating the static, decidable inference of role variants (§ 4.3), projection (§ 4.4), and checking

condition 3 of well-formedness (§ 4.5).

Remark 1. An iteration domain {r1, ...,rn }{i1:D1, ...,im:Dm } can equivalently, and closer to our

extended Scribble notation, be represented as a sequence r1[i1:D1],r1[i2:D2], ...,rn[im:Dm], where

n andm are unrelated. Our present notation is more convenient to deal with in proofs.

Example 4.3 (Pget). Let k represent the number of Fetchers in the Pget protocol (§ 3.2). The

following global type specifies the first half of the Pget protocol (A = Z): GPget =

F[1]→ S : Head . S→ F[1] : Res . F[1]→ M : Size . foreach F{i:1..k} do (M→ F[i] : Range . cont) ; ...

Example 4.4 (Ring). Let k represent the number of Workers in the Ring protocol (§ 2.2). The

following global type specifies the Ring protocol, extended with branching and recursion (A = Z):

GRing = rec X W[1]→ W[2] :{
Nx . foreach W{i1:2..k-1,i2:3..k} do (W[i1]→ W[i2] : Nx . cont) ; (W[k]→ W[1] : Nx . X)
Dn . foreach W{i1:2..k-1,i2:3..k} do (W[i1]→ W[i2] : Dn . cont) ; (W[k]→ W[1] : Dn . end)

}
Example 4.5 (Fibonacci). The following global type specifies a Fibonacci-k protocol (A = Z):

GFib = foreach Fib{i
(-2)

:1..k-2,i
(-1)

:2..k-1,i:3..k} do
(Fib[i

(-2)
]→ Fib[i] : Val . Fib[i

(-1)
]→ Fib[i] : Val . cont) ; end
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Fig. 9. Basic mesh communication patterns (Ex. 4.7)

Example 4.6 (Hadamard). Let k11 and kwh represent the top-left and the bottom-right of 2d

matrices A, B, and C . The following global types specifies a protocol to compute the Hadamard

product (i.e., coordinate-wise product) of A and B as C (A = Z × Z):

GHad = foreach {A,B,C}{i:k11..kwh} do (A[i]→ C[i] : Val . B[i]→ C[i] : Val . cont) ; end

Example 4.7 (Mesh). Let k11, k1h, kw1, and kwh represent the top-left, the bottom-left, the top-right,

and the bottom-right of a 2d mesh. The following global types (message labels omitted), three of

which are visualised in Fig. 9 for a 4×3 mesh, specify five basic mesh communication patterns:

horizontal wave, diagonal wave, column pipeline, 2d scatter, 2d gather.

GHWave = foreach W{i1:k11..kwh-(1,0),i2:k11+(1,0)..kwh} do (W[i1]→ W[i2] . cont) ; end
GDWave = foreach W{i1:k11..kwh-(1,1),i2:k11+(1,1)..kwh} do (W[i1]→ W[i2] . cont) ; end
GColPipe = foreach W{i1:k11..k1h-(0,1),i2:k11+(0,1)..k1h} do

(W[i1]→ W[i2] . cont) ; W[k1h]→ W[k11] . end

G2dSca = foreach W{i:k11..kwh} do (M→ W[i] . cont) ; end
G2dGat = foreach W{i:k11..kwh} do (W[i]→ M . cont) ; end

Remark 2. Although our foreach operator for global types unrolls iterations of its body sequentially

in terms of its index values, it maintains the concurrency characteristics of MPST. E.g., in standard

MPST, the two interactions in A→ B :Foo . C→ D :Bar are concurrent since the roles in each are

independent; this remains the case if such a fragment occurs inside a foreach, e.g., the A/B action of

the final iteration could potentially occur before the C/D of the first iteration.

In addition to such “latent” concurrency, a global foreach may be elided from the local type
by projection depending on the communication pattern. For instance, none of the Worker local

types in the Pipeline protocol (shown in the next paragraph) has foreach, contrasting the global

type in Fig. 8. This observation is more pronounced when extended to a Recursive Pipeline proto-

col, rec X (foreach W{i1:1..k-1,i2:2..k} do (W[i1]→ W[i2] : Val . cont) ;X ), which allows multiple

Worker pairs (participating in different recursive calls) to communicate concurrently.

Our implementation also supports runtime parallelisation of foreach as an optimisation, when

parameterised variants do not interact (demonstrated in § 3.3).

Local types. Fig. 7, third line, shows the syntax of local types. r [x] !{ℓj .Lj }j ∈J denotes the send
of a message labelled as ℓj to receiver r [x], for j ∈ J (chosen by the sender), followed by the actions

specified in Lj . Symmetrically, r [x] ?{ℓj .Lj }j ∈J denotes the receive of a message labelled as ℓj from
sender r [x]. For instance, the local types for k = 3 Workers in the Pipeline protocol are:

LW[1]
Pipe
= W[2] ! T . end LW[2]

Pipe
= W[1] ? T . W[3] ! T . end LW[3]

Pipe
= W[2] ? T . W[4] ! T . end

The Supplement,
4
§ II.2 contains more example local types, for the same protocols as above.

Syntactic sugar. Fig. 10 shows syntactic sugar for foreach in global types and local types.

∗
−→−→ expands to an all-to-all global type; it demonstrates foreach nesting.

∗

=⇒=⇒ expands to a pairings
global type. Note that while senders may have multiple labels to choose from (if |J | > 1), each of

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.

https://www.doc.ic.ac.uk/research/technicalreports/2018/#4


Distributed Programming using Role-Parametric Session Types in Go 29:15

r1[D1]
∗
−→−→ r2[D2] :{ℓj .G′ }j∈J ≜ foreach r1 {i1:D1 } do

(foreach r2 {i2:D2 } do (r1[i1]→ r2[i2] :{ℓj . cont}j∈J ) ; cont) ;G′

r1[D1]
∗
=⇒=⇒ r2[D2] :{ℓj .G′ }j∈J ≜ foreach {r1, r2 } {i1:D1, i2:D2 }(r1[i1]→ r2[i2] :{ℓj . cont}j∈J ) ;G′

r1
1

−→−→ r2[E1..E2] :{ℓj .G j }j∈J ≜ r1→ r2[E1] :{ℓj . foreach r2 {i:E1+1..E2 } do (r1→ r2[i] :ℓj . cont) ;G j }j∈J

r 1

=⇒=⇒ [E1..E2] :{ℓj .G j }j∈J ≜ r [E1]→ r [E1+1] :
{
ℓj . foreach r {i1:E1+1..E2-1, i2:E1+2..E2 } do

(r [i1]→ r [i2] :ℓj . cont) ;G j

}
j∈J

r [D] †∗ {ℓj . L′ }j∈J ≜ foreach r {i:D } do (r [i] †{ℓj . cont}j∈J ) ; L′ if † ∈ {!, ?}

r [D] !1 {ℓj . Lj }j∈J ≜ r [E1] !{ℓj . foreach r {i:E1+1..E2 } do (r [i] ! ℓj . cont) ;G j }j∈J if D = E1..E2

Fig. 10. Syntactic sugar for global types ( ∗−→−→ ,
∗
=⇒=⇒ ,

1

−→−→ ,
1

=⇒=⇒ ) and local types (†∗,!1), under A = Z

these choices has the same continuation G ′. This is to syntactically enforce a fundamental rule

of interacting parties in a parameterised setting: if a protocol allows separate parties to make

independent (inconsistent) choices without additional synchronisation, the continuation of that

protocol cannot depend on any of those choices (because parties are not aware of all choices made).

1

−→−→ expands to a master-slaves global type, where the master (r1) chooses a message label from

{ℓj }j ∈J and communicates a corresponding message to all its slaves (r2); the distinguished com-

munication from the master to the first slave ensures the master commits to its initial choice.
1

=⇒=⇒

expands to a pipeline global type, where the front Worker chooses a message label from {ℓj }j ∈J ,
then corresponding messages are propagated onward. In these two sugars, only one choice is made

(in contrast to
∗
−→−→ and

∗

=⇒=⇒ ), known to all parties, allowing choice-dependent continuations.

†∗ expands to a send-to-all (†= !) or receive-from-all (†= ?) local type that corresponds precisely
to the projections of (the expansion of)

∗
−→−→ . Similarly, !1 expands to a send-to-all local type that

corresponds precisely to the projections of
1

−→−→ . The difference between !∗ and !1 pertains to the
number of choices made: with !∗, the sender may choose a different message label for every receiver,

while with !1, the sender must choose the same message label for every receiver. (No special local

type sugar is needed for the remaining global type sugar, as its projections have no foreach.)

Example 4.8 (Syntactic sugar). The global types in Ex. 4.3, 4.4 can be rewritten:

GPget = F[1]→ S : Head . S→ F[1] : Res . F[1]→ M : Size . M
∗
−→−→ F[1..k] : Range . ...

GRing = rec X (W 1

=⇒=⇒ [1..k] :{Next . W[k]→ W[1] :Next . X, Done . W[k]→ W[1] :Done . end})

4.3 Role Variants
Role variants. In our theory, different individuals that enact a role with the same name may

have different communication behaviours; theoretically, role names are uninterpreted constants,

void of semantics. For instance, the front Worker (who only sends), the middle Workers (who both

receive and send), and the back Worker (who only receives) in the Pipeline protocol (Fig. 8) have

different communication behaviours, but they all enact the same role W.

This phenomenon presents a theoretical challenge: neither can we associate a single local type L
with a role r (i.e., L can impossibly cover all behavioural variations exhibited by individuals that

enact r ), nor can we associate a local type with every individual (i.e., the number of individuals can

be unknown until run-time). To solve this problem, we introduce the concept of role variants: a
group of (ranks of) individuals that both enact the same role r and have “the same” behaviour, in

the sense that the behaviour of each of these individuals can be specified by the same local type.

For instance, the single local type that specifies the behaviour of every middle Worker is:

LW[2..k-1]
Pipe

= W[self-1] ? Val . W[self+1] ! Val . end

where self denotes a distinguished parameter to abstractly represent the rank of a concrete Worker,

set at run-time (i.e., L
Pipe,W[2] on page 14 is obtained by setting self= 2).
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Inferring role variants (1). Our language of global types does not feature constructs to explic-

itly specify role variants. This is because they can be automatically inferred from intervals. Before

formulating our inference procedure in full generality, we explain its key points with two examples.

Reconsider the Pipeline global type GPipe in Fig. 8. Suppose we aim to determine the behaviour

of Worker a. The iteration domain in GPipe specifies two intervals: 1..k-1 and 2..k.

• If a is contained in interval 1..k-1, but it is not contained in interval 2..k, then a = 1. In this case,

Worker a participates in exactly one iteration of the loop (i.e., the first one), as a sender.

• If a is not contained in interval 1..k-1, but it is contained in interval 2..k, then a = k. In this case,

Worker a also participates in exactly one iteration of the loop (i.e., the last one), as a receiver.

• If a is contained in both intervals, then 1 < a < k. In this case, Worker a participates in two
iterations of the loop: first as a receiver, and then as a sender.

The crucial insight demonstrated by this example is that the behaviour of any Worker is completely
determined by the intervals that contain its rank; there are no other sources of behavioural variation.

Moreover, since the number of intervals in any global type is bounded, the number of role variants

is bounded as well: role W occurs with only two intervals in GPipe, so W has at most 2
2
variants.

Inferring role variants (2). Consider global typeG ′
Pipe
= M→ W[1] : Init .GPipe, which prefixes

GPipe with an initial communication from the Master to the first Worker. In this global type, role

name W occurs actually with three intervals: two explicit ones in the iteration domain in GPipe (as

before), and one implicit one in the initial communication, namely 1..1. To see where this implicit

interval comes from, note that the initial communication can be rewritten with foreach:

foreach W{i:1..1} do (M→ W[i] : Init . cont) ;GPipe

(Such rewriting is not always possible, because it generally does not preserve well-formedness; we

do it here only to show what we mean with “implicit intervals”.) Since role W occurs with three

intervals in G ′
Pipe

, W has at most 2
3
variants. Four of these “potential variants” of W are invalid. For

instance, there exists no rank a that is both in interval 1..1 and in interval 2..k.

Inference procedure. We formulate our inference procedure as follows. Let ival(r ,G ) denote
the set of intervals consisting of {D j }j ∈J for every foreach R ∪ {r }{i j:D j }j ∈J do G1 ;G2 in G and

E..E for every r [E] inG . Note that ival does not interpret intervals into sets of concrete ranks; every
element in ival(r ,G ) is syntactic, of the shape E1..E2. Every binary partition D, ¯D of ival(r ,G ), of
the total 2

|ival(r ,G ) |
, characterises a potential variant of role r ; we denote this variant as r [D, ¯D]. To

check its validity, we construct a formula Φ(D, ¯D). Let k1,k2, ... denote the parameters in G.

Φ(E1..E2) = E1 ⪯ self ⪯ E2 Φ(D, ¯D) = ∃self.
[ [∧

D∈D Φ(D)
]
∧
[∧

D̄∈ ¯D ¬Φ(D̄)
] ]

If ∃k1.∃k2....Φ(D, ¯D) is true, there exists at least one instantiation of parameters k1,k2, ... such
that there exists a individual (i.e., ∃self) whose rank is contained in all the intervals in D (i.e.,∧

D∈D Φ(D)), and not contained in all the intervals in
¯D (i.e.,

∧
D̄∈ ¯D ¬Φ(D̄)). In more operational

terms, if Φ(D, ¯D) is true, there exists at least one run-time configuration of parameters in which

at least one individual enacts the role variant characterised by Φ(D, ¯D); thus, r [D, ¯D] is valid.

Conversely, if Φ(D, ¯D) is false, there exists no such run-time configuration, meaning invalidity.

Thus, our inference procedure for variants of role r works as follows: (1) compute ival(r ,G ); (2)
for every partition D, ¯D of ival(r ,G ), check Φ(D, ¯D); (3) Φ(D, ¯D) is true iff r [D, ¯D] is valid.

Inferring families. A family is a set of role variants that collectively constitute a consistent

run-time configuration of an application. For instance, the Pipeline protocol has two families (Fig. 8):

one for k= 2 (front and last Worker), and one for k> 2 (front, middle, and last Worker).

Role variant families can be inferred using a similar approach as for role variants. Let Vall denote
the set of all inferred role variants. For every partition V ,V̄ of Vall, construct the following formula:
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Ξ(V ,V̄ ) =
[∧

r [D, ¯D]∈V Φ(D, ¯D)
]
∧
[∧

r [D, ¯D]∈V̄ ¬Φ(D, ¯D)
]

If ∃k1.∃k2....Ξ(V ,V̄ ) is true, there exists at least one instantiation of parameters k1,k2, ... such that

only every variant in V is enacted by at least one individual, so V is a family.

4.4 Projection
Our final ingredient is a projection operator, ↾: it consumes as input a global typeG and a role variant

r [D, ¯D], and it produces as output one local type that specifies the behaviour of all individuals
that enact r [D, ¯D]. Below is an excerpt of the definition:

(r1[x1]→ r2[x2]:{ℓj .G j }j∈J ) ↾ r [D, ¯D] =




r2[x2]!{ℓj .G j ↾ r [D, ¯D]}j∈J if r1 = r , r2, x1..x1 ∈ D
r1[x1]?{ℓj .G j ↾ r [D, ¯D]}j∈J if r1 , r = r2, x2..x2 ∈ Dd
{G j ↾ r [D, ¯D]}j∈J if r1 , r , r2

rec X G ↾ r [D, ¯D] = rec X (G ↾ r [D, ¯D]) X ↾ r [D, ¯D] = X G ↾ r [D, ¯D] = G if: G ∈ {cont, end}

(foreach R {i j:D j }j∈J do G1 ;G2) ↾ r [D, ¯D] =




... (omitted – see Supplement,4 § II.3) if r ∈ R
foreach R {i j:D j }j∈J do if r < R

(G1 ↾ r [D, ¯D]) ; (G2 ↾ r [D, ¯D])

↾ recursively traverses the structure of global typeG and checks for every communication whether

role variant r [D, ¯D] (i.e., an individual that enacts r [D, ¯D]) participates as the sender or the

receiver. If so, it adds a corresponding I/O action to the local type under construction; otherwise, it

continues the traversal and merges projections of the continuations using ⊓; the definition of ⊓ is

standard (e.g., [Deniélou et al. 2012]), extended in the natural way for foreach. As usual (e.g., [Coppo

et al. 2016; Honda et al. 2016]), projection is partial: it is undefined for unsafe protocols.

If foreach is encountered, our projection operator checks if r is in the iteration domain. If it

is not, r [D, ¯D] participates in all iterations of the loop (i.e., foreach must be preserved in the

local type under construction), and in every iteration, it behaves according to the projected body

(possibly empty, i.e., cont). Otherwise, if r is in the iteration domain, r [D, ¯D] participates in only

some iterations (i.e., foreach must not be preserved), for which special measures need to be taken,

represented above as “...”; see the Supplement,
4
§ II.3 for the full definition.

Example 4.9. Role S does not occur in the iteration domain of foreach in GPget, Ex. 4.3, so must

be preserved in GPget ↾ S[{0..0},∅]. This is as expected: Server receives from all Fetchers, so it

participates in all iterations. In contrast, role F does occur in the iteration domain, so foreach is lost

in GPget ↾ F[{2..k}, {1..1}]. This, too, is as expected: every Fetcher sends exactly once to Server.

4.5 Decidability and Correctness
Inference procedures. We first address the decidability of our inference procedures in § 4.3.

Theorem 4.10. Inference of role variants and families is decidable.

Proof. Because ival(r ,G ) is finite (i.e., the set of intervals that occur syntactically in G), the
number of binary partitions D, ¯D is finite as well. Also, Φ(D, ¯D) and Ξ(V ,V̄ ) are formulas over

⟨A,+,0,⪯⟩, which is decidable (see § 4.1 and Ex. 4.1, 4.2). □

Well-formedness. Weguarantee correctness and safety forwell-formed global types. LetK⇀ A
denote the set of all partial substitutions of values for parameters, ranged over by σ ,τ ; let G ⟨⟨σ ⟩⟩
denote the instantiation of G in accordance with σ . A substitution σ closes global type G if G ⟨⟨σ ⟩⟩
has no parameters; G ⟨⟨σ ⟩⟩ is well-closed if all intervals in G ⟨⟨σ ⟩⟩ are non-empty.

A global typeG is well-formed if for all σ such thatG ⟨⟨σ ⟩⟩ is well-closed: (1) index variables and
type variables inG are bound by foreach and rec; (2) rec does not occur under foreach inG; (3) an
“inner” foreach in G cannot range over role names already ranged over by an “outer” foreach; (4)

all intervals in the same iteration domain in G ⟨⟨σ ⟩⟩ have the same length. Condition (2) ensures

that every iteration of a loop terminates; we support only tail recursion. Condition (3) ensures that
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the number of iterations an individual participates in can be computed statically. Condition (4)

ensures that the “table” for every iteration domain (e.g., Fig. 8) has a well-defined number of “rows”.

Theorem 4.11. Checking well-formedness is decidable.

Proof. Conditions (1), (2), and (3) are structural and independent of σ ; checking them is triv-

ially decidable. In contrast, checking condition (4) requires universal quantification over the set

{σ | G ⟨⟨σ ⟩⟩ is well-closed}, which can be infinite. To check (4), we construct a first-order formula

over ⟨A,+,0,⪯⟩, which is decidable (see § 4.1 and Ex. 4.1, 4.2), as follows. Let k1,k2, ... denote the
parameters that occur in G, and let I denote the set of all iteration domains that occur in G:

Ψ¬∅ ({i j:Ej,1..Ej,2}j ∈J ) =
∧

j ∈J Ej,1 ⪯ Ej,2 Ψ(I) = ∀k1.∀k2....
[∧

I ∈I Ψ¬∅ (I ) ⇒
∧

I ∈I Ψ= (I )
]

Ψ= ({i j:Ej,1..Ej,2}j ∈J ) =
∧

j1,j2∈J (Ej1,2-Ej1,1 = Ej2,2-Ej2,1) Now, Ψ(I) is true iff (4) holds. □

Correctness and safety. In words, correctness of ↾ means that the behaviour specified by an

instantiated well-formed global typeG equals the joint behaviour specified by the instantiated local

types projected from G, namely one for every individual that enacts an inferred role variant.

Let L ⟨⟨τ ⟩⟩, D ⟨⟨τ ⟩⟩, and ¯D ⟨⟨τ ⟩⟩ denote the instantiation of the parameters in local type L and sets

of intervals D, ¯D according to τ (cf. G ⟨⟨σ ⟩⟩, above). Let ≡ denote trace equivalence of the LTSs

induced by a global type and a system (parallel composition) of local types [Deniélou and Yoshida

2013]. The following theorem states correctness; see the Supplement,
4
§ II.4 for our proof.

Theorem 4.12. For all well-formed G and σ such that G ⟨⟨σ ⟩⟩ is well-closed:
G ⟨⟨σ ⟩⟩ ≡ {(G ↾ r [D, ¯D]) ⟨⟨τ ⟩⟩ | ∃a : D ⊎ ¯D = ival(r ,G ), τ = σ ∪ {self 7→ a}, |= Φ(D ⟨⟨τ ⟩⟩, ¯D ⟨⟨τ ⟩⟩)}

Projection guarantees safety if the joint behaviour specified by the instantiated local types

projected from a well-formed global type is free of deadlocks and reception errors. Safety is a

direct consequence of correctness: deadlocks and reception errors cannot be specified in our

language of global types, so a correct projection never produces an unsafe system of local types.

The formalisation of the following corollary relies on the same LTS semantics of global types and

systems of local types as the one that underlies Thm. 4.12; see [Deniélou and Yoshida 2013].

Corollary 4.13. Projection guarantees safety.

5 IMPLEMENTATION
5.1 Extension of Scribble based on Distributed, Role-Parametric MPST
We extend the Scribble protocol language for role-parametric protocols based on our core formalism

in § 4 and the syntactic sugars outlined in § 4.2. Our presented design results from experimenting

with various combinations of primitives and communication patterns for a range of examples

(summarised in Fig. 15). Fig. 11 (top) outlines our grammar: we add foreach, and cover the special

global type arrows from Fig. 10 by extending the global interaction of Scribble (from/to) with

indexed roles p and inline message choices ℓ1 or ... or ℓn , and adding the pair/pipe primitives;

for simplicity, we show a restriction to one-dimensional indices (Ex. 4.1). д is a protocol name,

and A stands for basic boolean expressions for constraints on index variables; other notation not

explicitly defined here (e.g., r , E) is as in § 4.2. p1 means the restriction of D to [E, E] or [i]. In our

experience, these particular primitives are beneficial for writing protocols and using the generated

APIs (cf. “manual” foreach encodings), and also run-time performance.

Fig. 11 (bottom) illustrates the correspondence between our formal notation and Scribble syntax.

The Scribble PP choice subsumes the case of unary choices. For paired/pipelined-PP (top right),

pair corresponds to
∗

=⇒=⇒ , where the choice is made independently by each r1[i] to its opposing peer

in the r2 interval; pipe may be used here as the special case where r1 = r2 (so the choice is made
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P ::= global protocol д @A (role r1, ..., role rn) { G } p ::= r [y] y ::= D | i D ::= E1, E2
G ::= ℓ1 or ... or ℓn from p1 to p2; | choice at p1 { G1 } or ... or { Gn } | do д(r1, ..., rn); | G1 G2

| ℓ pair p1 to p2; | ℓ pipe r [D]; | foreach r1[i1:D1], ..., rn[in:Dn] { G }

Role-parametric subprotocols foreach R {i j :D j }j∈J do G1 foreach r1[D1], ..., rn[Dn] { G }

Choice(s) Scatter/gather/all-to-all: → Paired/pipelined unicasts: ⇒

Peer-to-peer

(PP): ∗

r1[D1]
∗
−→−→ r2[D2]{ℓ1, ℓ2 } ;G r1[D1]

∗
=⇒=⇒ r2[D2]{ℓ1, ℓ2 } ;G

ℓ1 or ℓ2 from r1[D1] to r2[D2]; G ℓ1 or ℓ2 pair r1[D1] to r2[D2]; G

Master-slaves

(MS): 1

p1 1

−→−→ r2[D2]{ℓ1 .G1, ℓ2 .G2 } r 1

=⇒=⇒ E1..E2 {ℓ1 .G1, ℓ2 .G2 }

choice at p1 { ℓ1 from p1 to r2[D]; G1 } choice at r[E1] { ℓ1 pipe r[E1,E2]; G1 }

or { ℓ2 from p1 to r2[D]; G2 } or { ℓ2 pipe r[E1,E2]; G2 }

Fig. 11. Practical syntax for role-parametric protocols: (top) extended Scribble grammar; (bottom) illustration
of global type and Scribble correspondence (cf., the formal syntactic sugars in Fig. 10).

at each step along the interval). The MS choice is for more than one case (we show only binary

choices for brevity). For pipelined-MS (bottom right), the interaction must be a pipe, where the

choice is propagated along the interval, for the MS choice to be consistent at all receivers. In the

Scribble foreach, (r[D])1..n enumerates the ranges used in the formal notation (cf. Rem. 1).

We omit the implementation details of basic syntactic checks (e.g., valid combinations of choice

and from/pair/pipe as per Fig. 11) and well-formedness (§ 4.5) that are as expected. Cond. (4) of

well-formedness, valid role variants, and variant families are similarly determined following § 4.3.

Our toolchain integrates Scribble with Z3 to check the induced constraints; e.g., for Pipeline (Fig. 8),

this generated Z3 assertion confirms the middleman is a valid variant:

(assert (exists ((self Int) (K Int)) (and (> K 1) // Annotated domain constraint

(>= self 1) (<= self (- K 1)) (<= 1 (- K 1)) (>= self 2) (<= self K) (<= 2 K) // D constraints for W2. .K− 1
(not (and (>= self 1) (<= self 1))) (not (and (>= self K) (<= self K))) ))) // ¯D constraints for W2. .K− 1

5.2 Communicating FSM Based Representation of Local Types
Our toolchain uses an internal representation of local types (§ 4.2) based on communicating FSMs

with gather/scatter I/O and parameterised nesting of sub-FSMs within states. The correspondence

between the syntactic types and our FSMs is straightforward: we outline the correspondence below,

and provide a full definition in the Supplement,
4
§ III.1.

Based on our local types, we write r [D]†ℓ, † ∈{!,?}, for the scatter/gather I/O of our FSMs. Fig. 12

shows the FSMs for MS and PP choices; the latter demonstrates the basic FSM for foreach.

MS The !
1
send-to-all local type (§ 4.2), which selects the same choice at all peers, corresponds to

an FSM scatter: the type r [y] ‡ {ℓj .Lj }j ∈J is simply represented as a state with each of the J cases
as a separate transition. Dually, MS input is implicitly a standard ? from a single peer (i.e., there is

no ?
1
), for MS choices to be consistent across all receivers.

PP Non-unary PP choices are represented as nested FSMs, via foreach desugaring of
∗
−→−→ /

∗

=⇒=⇒ (Fig. 10).

For the example type foreach r {i:D} do r [i] † {ℓj . cont}j ∈J ;L, the subprotocol – i.e., a †-choice of

J cases – is nested and parameterised within the initial state of the FSM for the continuation L,
denoted sL

0
. This FSM is just a representation of the local type behaviour: first repeat the nested

FSM for each value of i in D in sequence, then perform one of α1..n (standard state transition).

At the local type level, unary PP choices coincide with MS choices: as an optimisation, we represent

unary PP choices similarly to MS choices (i.e., without nesting).

We introduce some notation for our FSMs, that we shall use for defining our Go API generation.

A role variant FSM (henceforth, FSM) is a tupleM = (S,R,s0,T,δ ,ϕ). Apart from the last element,

all are standard [Deniélou and Yoshida 2012]. S={s1,s2, ...} is a set of state identifiers; s0 ∈ S is
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Master-slaves (MS) ‡ ∈{!1, ?} [[!
1
]]=! [[?]]=? Peer-to-peer (PP) J > 1 (foreach) † ∈{!, ?}

r [y] ‡ {ℓj . Lj }j∈J

L1 L | J |
...

r[y][[‡]]ℓ1 r[y][[‡]]ℓ| J | foreach r {i:D } do
ar [i] † {ℓj .cont}j∈J ; L

1

...r [i]†ℓ1 r [i]†ℓ| J |

i:D sL
0

...

...

α1

αn

..
.

sL
0
is the initial state of the FSM for L; α1. .n are the actions at sL

0

Fig. 12. Representation of local types as communicating FSMs (partial illustration).

the initial state. R = {r1,r2, ...} is a set of role names. T = {ℓ1, ℓ2, ...} is a set of message labels.
δ : S×{α1,α2, ...} → S is the transition function, where α1,α2, ... are local actions of the form r [y] † ℓ
with † ∈{!,?}. Finally, ϕ : S→M×P is the nesting function, whereM is the domain of FSMs and P
is the domain of sets of indexed intervals, ranged over by P .
By the syntax and properties of global types and projection (§ 4), every transition from a state

has the same action kind †; and every transition of an input state has the same peer r [y]. We also

collapse every occurrence of end in a local type, if any, to a single terminal state at the top level of

its FSM (similarly, for cont at the top level of a foreach). A “plain” state (i.e., that we depict without

a nested FSM) corresponds to a state that nests a sole (terminal) state.

5.3 State Channel API Types Generation for Go
We first explain the key types and methods generation for states, I/O and branching, and nested

FSMs. We simplify the presentation in two ways. First, we abstract from the details of specific

naming schemes for types and methods: we use the notation [[·]] to stand for any concrete name

mapping, e.g., [[s]] is a Go type name for a state s , and [[s,α]] is an I/O method name for action α from

s . Second, we assume a “flat” naming scheme for methods, instead of the scheme presented in § 3,

e.g., S_Send_Head(...) instead of S.Send.Head(...); we illustrate the more cosmetically elaborate

types generation for the latter in the Supplement,
4
§ I.1.1. As noted earlier, a local program may

use Go package/type aliases, or the user could supply custom names as Scribble annotations.

In the following, assume a variant v = r [D, ¯D] (of some protocol д), and let s be a state in the

FSM of v such that δ (s ) = {α j 7→ sj }j ∈ J and ϕ (s ) =M ,P . Let [[M0]] (resp. [[MEnd]]) be a type name

derived from the initial (resp. terminal, if present) state of M ; and [[v]] be the type name of the

Endpoint for v (e.g., the type of M on the left of Fig. 5, line 3).

Nested FSMs. Fig. 13 (top) shows the types generated w.r.t. the nesting of M in s . [[s]] is the
“main” (or entry) state channel type for s (e.g., the initial state, or result of the previous I/O method).

It offers a Foreach method, that takes a function from [[M0]] to [[MEnd]], i.e., an implementation of

the nested behaviour. The result (after all nested behaviours are completed) is [[s]]′, an intermediary

type for finally performing a transition out of s . The basic Go code for executing a nested FSM and

the subsequent state transition may thus look like:

s.Foreach(nested).m(...) s is a variable of type [[s]], nested is of type func([[M0]]) [[MEnd]]

Foreach is generated to repeat nested over the intervals P embedded into the API, and m is the I/O

method generated for the subsequent transition, explained next.

I/O and branching. The generation of I/O methods depends on which kind of state s is.

Output or unary-input For each α j = r1[y] !ℓj with |J | > 1, or for α1 = r j [y] ?ℓ1 when |J | = 1:

func (c *[[s]]′) [[s, α j ]] (m ⟨⟨ℓj ⟩⟩) *[[δ (s, ℓj )]] { ... } ⟨⟨ℓj ⟩⟩ is, e.g., *ℓj for Send/Receive, []ℓj for Scatter/Gather

(c *[[s]]′) is the method receiver (i.e., the intermediary result type of Foreach), [[s,α j ]] is the method

name, and ⟨⟨ℓj ⟩⟩ stands for the parameters according to the I/O action kind (e.g., singleton Send

/Receive are special cases of Scatter/Gather). We omit details of further variations, e.g., Reduce.
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type [[s]] struct { Err error; id uint64; ep *[[v]]; ... } // State channel type: first do Foreach

func new_[[s]](...) *[[s]] { ... return &[[s]]{...} } // Private constructor (used internally within API)

type [[s]]′ struct { Err error; id uint64; ep *[[v]]; ... } // Intermediary type (after Foreach done)

func (c *[[s]]) Foreach(nested func(int, *[[M0]]) [[MEnd]]) *[[s]]′ { ... } // int is the Foreach index param

State type Method name, signature
State Peer I/O Label, value Succ.

W_2toK_1 W_self_sub1 Branch() *W_2toK_1_Cases

W_2toK_2 W_self_plus1 Send Next(a *Next) *W_2toK_1

W_2toK_3 W_self_plus1 Send Done(a *Done) End

W_2toK_1_Cases is an interface, implemented by the below case types

tNext n/a Receive Next(a *Next) *W_2toK_2

tDone n/a Receive Done(a *Done) *W_2toK_3

var n next; var d Done

for {

switch c := w.W_self_sub1.Branch().(type) {

case *tNext:
w = c. Receive.Next(&n).

W_self_plus1.Send. Next(&n)

case *tDone:
return c. Receive.Done(&d).

W_self_plus1.Send. Done(&d) } }

Fig. 13. State channel API generation: (top) state channel and Foreach type signatures; (bottom) type switch
branch API types and I/O methods for the W2..K− 1 variant in Ring (Ex. 4.4), and an example implementation.

Branch-input (|J | > 1) We show the branch API generation that targets Go type switch statements.

type [[s]]_Cases interface { [[s]]_Case() }

func (c *[[s]]′) Branch() *[[s]]_Cases { ... }

type [[s]]_ℓj struct { Err error; id uint64; ep *[[v]]; ... }

func (*[[s]]_ℓj) [[s]]_Case() { } // Implement _Cases i/face

func (c *[[s]]_ℓj) [[s, α j ]](m *ℓj) *[[δ (s, ℓj )]] { ... }

On the left, [[s]]_Cases is an interface representing the valid choice cases: on the right, for each

α j = r [x]?ℓj , we generate an [[s]]ℓj type that implements this interface (via the token [[s]]_Case
method) and offers an appropriate [[s,α j ]] input method. The Branch method, with receiver *[[s]]′

(like the I/O methods above), is then generated to block until a message is received, and return the

corresponding implementation of the [[s]]_Cases interface.

As an example, Fig. 13 (bottom) summarises the branch API types generated for the W2..K−1
“middleman” variant in Ring (Ex. 4.4) and gives a user implementation. A type switch switch c

:= ....(type) evaluates the expression (assigned to c) and selects the first case that matches the

run-time type of the result. IDEs can auto-generate exhaustive switch cases for the programmer.

Our implementation simplifies the generated API as expected in certain cases. E.g., whenM is

a single state (i.e., s is a “plain” state), the API generation skips the intermediary [[s]]′ type and
Foreach method, and sets the receiver of the I/O methods directly to [[s]]. Our examples in this

paper assume a [[·]] that maps terminal states to an End type; we also set the result of terminal I/O

methods to a non-pointer End type for stronger safety, as it prevents, e.g., return nil.

Note that FSMs are explicitly used only at compile-time for the presented types generation: the

point of the types is to statically guide the FSM structure implicitly in the program. At run-time,

the only checks introduced by our APIs are on session initiation parameters and channel linearity,

as explained in the next paragraph.

Automated inlining of dynamic checks. The static assurances of the generated Go API types
are supported by automated inlining of a few kinds of lightweight run-time checks into the API.

Go preliminaries: a defer statement pushes a function call (e.g., a channel closure) onto a list; the

list is executed after the surrounding function returns. Panic is a built-in function that stops the

control flow of the calling goroutine and executes any deferred calls at each level of its call stack;

control flow may be regained by (a deferred call to) the built-in recover function.

Endpoint initiation The first check is on the parameter values supplied to the Endpoint con-

structor (e.g., K in Fig. 5, line 3), derived straightforwardly from the D, ¯D elements of the variant.

This is a simpler version of the compile-time Z3 assertion illustrated in § 5.1 that just checks

the constraints on concrete values (as a Go expression) rather than existential quantifications.
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Secondly, the Dial/Acceptmethods are generated to check for, e.g., duplicate connections; similarly,

the top-level run checks for missing connections. A violation of these checks raises a panic.

State channel API The implicit usage contract of a state channel API is to use every channel

instance exactly once, i.e., linearly. Repeat usage is dynamically checked by assigning a fresh ID

value to each channel instance (the uint64 fields in Fig. 13, top) and recording for each Endpoint

the ID of the currently active channel: every I/O method is generated to check the target channel

is the indeed the currently active one. Endpoint completion, guided by the End return type of the

generated top-level run method, is an (at most) one-time deferred check within run.

Error handling and failures. We integrate the call-chaining nature of the presented APIs with

the explicit error handling paradigm of Go. The API is generated to (1) set the state channel Err

field (Fig. 13, top) in the successor channel instance if the preceding action caused an error (error

is an in-built interface type), or else Err is nil; and (2) raise a panic when an I/O method is called

on a channel whose Err is not nil. By our safety guarantees (see below), an error means a failure

in the underlying I/O or networking facilities, or perhaps the reception of an incorrect message

type when interacting with a potentially unsafe participant—the deserialization operations in our

generated API code for inputs serve as implicit compliance checks on received message types.

Idiomatic Go error handling using a state channel API is as below (cf. lines 18–19 in Fig. 5).

if m3 := m2.F_1toK.Scatter.Job(split(&meta)); m3.Err != nil { // Explicit handling (e.g., networking failure)

... } else { ... m4 := m3.F_1toK.Reduce.Data(&data, agg) ... } // Using m3 with m3.Err != nil would raise a panic

Here, we use the standard Go construct if x := f(); P(x) { g(x) } else { h(x) }, which first evaluates

f() and assigns the result to x, then evaluates P(x) to true or false, and finally executes g(x) or h(x);

the scope of x is constrained to this statement. The above code thus first attempts a scatter to the

Fetchers. If no error (e.g., network failure) occurs, m3 is the expected successor state channel, m3.Err

is nil, and the then-branch is executed; if an error occurs, m3.Err is non-nil and the else-branch is

executed. Handling errors in this way is idiomatic Go.

5.4 Practical Safety Guarantees of our Generated APIs
Our results in § 4.5 ensure, for a given family in a well-formed role-parametric protocol, the set

of projections onto each variant constitutes a safe, distributed decomposition of the protocol.

In other words, a distributed instance of this protocol (i.e., a session) is guaranteed free from

reception errors, deadlocks and orphan messages, at the level of abstraction of our target model of

asynchronous, pairwise-ordered and reliable message passing between the endpoints. The purpose

of the API generation step of our framework is then to promote compliance of concrete endpoint
implementations to their projections via native Go type checking, supported by the dynamic checks

built into the API (§ 5.3).

Specifically, a generated state channel API ensures: in a successfully initiated session,

a statically well-typed endpoint implementation will never perform a non-compliant I/O action
w.r.t. the run-time instantiation of the role-parametric protocol, up to premature session termination.

This is because the only way to attempt a non-compliant I/O action is to violate linear usage of a

channel instance, in which case the in-built API check will (by default) raise a panic without actually
performing the offending action. Such a situation effectively results, at worst, in an incomplete or

premature termination of the endpoint, and thus the session, w.r.t. the protocol. Note, however, that

premature termination is always a caveat in practice, due to program errors outside the session

code, or node/network failures. In this regard, our API generation considers linearity violations

and failures (via Err) uniformly, appealing to Go’s in-built panic, defer and recover facilities.

Once a session is initiated, the only dynamic checks are on linear channel usage, giving an affine

form [Tov and Pucella 2011] of theMPST safety discussed above. If the simple linearity condition of
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our APIs is respected, however, Go type checking is sufficient to ensure MPST safety. It would thus

be possible to combine our approach with a technique for statically checking linear resource usage,

given such a technique (with associated restrictions), to obtain the classical MPST safety outright.

Another highlight of our approach, and a basis for safety, is that the API generation internalises
the management of parameter values and index expressions related to identifying the session peer(s)

of every I/O action in the protocol—the user-supplied arguments of the generated I/O methods

relate only to messages. As observed by Samofalov et al. [2005] of process rank indices/expression

bugs in the setting of MPI programming, incorrect management of indices and parameters can be a

tricky source of communication errors in practice.

On static channel linearity. We note dynamic linearity checks are not fundamental to our
overall approach. By our results in § 4.5, our framework is amenable to the use of alternative

API generation methods for separate endpoints: our toolchain also supports callback-based API

generation, illustrated below for the first two states of M in Pget (Fig. 4):

M.register(M_1.state, func(c Cache, meta *Meta) { c.meta = meta }) // Callback for M_1: F_1?Meta

.register(M_2.state, func(c Cache) { new M_2.F_1toK.Job(split(c.meta)) }) // M_2: F[1,K]!Job

.... // Callbacks registered by user for each state on the generated Endpoint M

The above style of generated API encapsulates all communication channels under the API and

internalises the FSM itself: after session initiation, the API calls back the user-supplied, state-

specific functions at each state (upon message receipt for input states). Consequently, a Go endpoint

program using the callback API enjoys fully static MPST safety (for a successfully initiated session

with compliant peers); the tradeoff is requiring programming in an event-driven style.

The main API style presented in this paper promotes session programming in Go that is close to

standard channel/socket based APIs (and the session π -calculi in MPST formalisms). One advantage

is it allows us to re-implement existing Go programs more directly, as part of evaluating the

applicability of our framework (see § 6). In our experience, debugging local linearity violations (as

exceptions) is much simpler than the full task of debugging reception errors or deadlocks between

distributed, non-compliant endpoint implementations.

The interested reader may find details on the Scribble-Go Runtime in the Supplement,
4
§ III.2.

6 EVALUATION
We evaluate our framework in terms of run-time performance (§ 6.1), and applications (§ 6.2), using

a machine with an Intel i7-8770 processor (6 physical and 6 virtual cores) and 16GB RAM, running

Debian 9.1 and Go version go1.11.2. We used the Go benchmarking tools (https://godoc.org/testing).

6.1 Run-time Overheads of Generated APIs
Microbenchmarks. We measure the overheads introduced by our framework during session

execution, due to using the generated state channel API, our Runtime, and dynamic linearity

checks. We first present microbenchmarks as a worst-case for the above overheads in isolation,

by performing no work other than I/O. We use three kinds of microbenchmark programs, for

the core patterns: One-to-Many (multi-destination send, single-source receive), Many-to-One
(single-destination send, multi-source receive), andMany-to-Many (multi-destination send, multi-

source receive). Each benchmark kind is parameterised on a k : in the first two, k is the number of

goroutines at the Many side; in the third, k is divided evenly between sender/receiver goroutines.

We implement each benchmark by two methods. (1) Scribble-Go: we specify the above patterns
as protocols in our extended Scribble and implement the Endpoints using our generated APIs. For

each Endpoint, we have two versions of initiation that differ only by the selected Runtime transport,

shm or tcp. (2) Go base cases: each Scribble-Go program has a Go base case that corresponds to
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Fig. 14. Scribble-Go exec. time vs. Go base cases: (left) shm micro, (middle) tcp micro, and (right) CLBG.

replacing all occurrences and uses of state channels by direct references and uses of the underlying

communication facilities, i.e., (unbounded) Go channels, or TCP sockets from the net package. We

specify messages as having an int payload, and let k range over 1..11.
We measure the execution time from session start at the first sender (after all goroutines and

connections established – in Scribble-Go, that is after entering the generated top-level run), to the

end at the last receiver (before any connections closed). Since the execution time of a single instance

of the above patterns is very small (on the order of nanoseconds), we repeat the communication

actions (i.e., extend the “session length”) in a loop of N iterations in each endpoint program and

take the mean (N is set by the benchmarking tool, e.g., > 106, such that a run exceeds one second).

The tcp endpoints are run as intra-process goroutines by the same setup as for shm, communicating

through localhost TCP. We repeat each benchmark run 40 times and take the mean.

Fig. 14 (left) shows Go base case shm session execution time relative to Scribble-Go: x ranges

over the value of k , and y is given by tдo / tapi (y = 1 is the baseline). The relative overheads of
Scribble-Go are ∼10% in most cases, over the range of k ; for reference, we note that the absolute
overhead per pattern is ∼20 nanoseconds. Fig. 14 (middle) shows the corresponding results for tcp:

the overheads are mostly < 3%. We remark that the relative overheads will continue to diminish as

latency increases, e.g., for TCP over LAN or the Internet.

Case study: Computer Language BenchmarksGame (CLBG). Wenext present benchmarks

using existing applications from Debian’s CLBG [Gouy 2017], a repository of programs used to

compare the performance of different languages (e.g., [Brunthaler 2010; Shirako et al. 2009; St-

Amour et al. 2012; Wrigstad et al. 2010]). We use three concurrent Go programs: (a) k-nucleotide
counts occurrences of molecule sequences in a DNA string, (b) regex-reduxmatches regex patterns

against a DNA string, and (c) spectral-norm computes the greatest eigenvalue of a matrix. All three

are based on scatter/gather work parallelisation between goroutines using Go channels. We take the

original programs, written by the Go Authors, as the Go base cases. For Scribble-Go, we specify
the (previously implicit) application protocols using our extended Scribble, each parameterised on

a number 1 ≤ k ≤ 12 of “worker” goroutines; and modify the original programs by replacing all

vanilla Go channels, sends and receives with shm state channels and calls to the generated APIs.

For these macrobenchmarks, we measure the execution time of the whole application (i.e.,

including channel creations, Scribble-Go Endpoint initiations, etc.). We use the standard inputs

defined in the CLBG, and take the mean of 20 repetitions for each application. Fig. 14 (right) shows

the execution time of the Go base cases relative to Scribble-Go: x ranges over k , and y is tдo / tapi .
The results show Scribble-Go performs at least as well as the original programs in most cases; we

expect the cost of computations in real applications such as these will often render the overheads

negligible, considering the absolute values measured in the microbenchmarks. Scribble-Go is

actually faster in some cases for regex-redux and k-nucleotide (observed for different versions of

our Runtime). We believe this is due to including channel creations in the time measurement, and a
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(□ is the difference between the two versions in § 3.2; § 3.3)    □  

10. Vickrey auction (Supplement, § IV.1.2)       
11. Jacobi solution of discrete Poisson equation. [Bejleri et al. 2009]       
12. n-body simulation (based on Ring) [Bejleri et al. 2009]      
13. Iterative linear equation solver (based on Mesh) [Ng and Yoshida 2015]       
14. k-nucleotide [Gouy 2017] (§ 6.1)   
15. regex-redux [Gouy 2017] (§ 6.1)   
16. spectral-norm [Gouy 2017] (§ 6.1)     
17. Fibonacci [Lange et al. 2017]   
18. Quote-Request [Austin et al. 2004; Ng and Yoshida 2015]      
19. P2P multiplayer game [Scalas et al. 2017]       
20. Web Crawler [Akhmadeev 2016; Neykova and Yoshida 2017]     
21. n-buyers [Coppo et al. 2016; Honda et al. 2016]     

Pt: point-to-point; Sc: Scatter; Ga: Gather; FE: Foreach; Pipe: Pipeline; MS: MS choices; PP: PP choices; Rec: Recursion; Del: Delegation

Fig. 15. Role-parametric protocols for communication patterns, topologies and applications in Scribble-Go.

small restructuring of the program to use the generated API: the original programs create their

goroutines and channels on the fly, whereas our adapted programs “pre-create” the goroutines

and channels up front in a session initiation phase. In profiling, we find the actual computation

code, which is the same in both versions, takes longer in the originals—one reason may be that the

adapted versions run with better thread locality and fewer cache misses without such “interruptions”

from goroutine spawning and channel creation.

6.2 Use Cases – Expressiveness and Applicability
We demonstrate the expressiveness and applicability of our framework by using our toolchain to

specify and implement protocols for a range of role-parametric communication patterns, topologies

and applications, listed in Table 15. The columns indicate the features of our extended Scribble used

in the protocol. We cite the background and related works from where we draw the examples—in

every case of parameterised session types literature, the parameterised aspect of the example was

treated by either an ad hoc or centralised (non-distributed) method. The topologies in 4–8 are

common in parallel algorithms. Due to space constraints, we explain the details of the examples in

the Supplement,
4
§ IV.1.

7 RELATEDWORK
Parameterised MPST and implementations of session types. § 2.2 gave initial discussions

of the closest related works on MPST for role-parametric protocols; we continue below.

Deniélou et al. [2012]; Yoshida et al. [2010] developed a role-parametric MPST using a dependent

types approach. Unlike our work, the top-down generic projection in their theoretical-only work does
not infer nor decouple role variants from the protocol; it simply encapsulates variant behaviours

into a consolidated local type. To compensate, they combine with a bottom-up mechanism of

taking endpoint decouplings from a pre-existing system of processes, and showing equivalence

between the generic projection and target types; roughly speaking, however, for types that are “not

syntactically close” (e.g., the generic projection of Ring and its role variants) the equivalence is often

undecidable. In general, the programmers of individual endpoints in a modular development of

some non-trivial multiparty application (e.g., not just binary RPCs) should commence development
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top-down from some notion of agreed protocol—otherwise the separate programmers cannot locally

determine the (inherently stateful) I/O structure that their endpoint should implement.

Charalambides et al. [2016] extend MPST theory with parameterised versions of session type

operators that represent repeat applications of the operator for some parameter value (possibly

run-time instantiated). Unlike our work, their system does not support role-parametric protocols as
their approach expressly requires prohibiting separate occurrences of a role with different indices;

this rules out, e.g., role-parametric pipeline structures. Also, they did not implement their theory.

Regarding implementations and applications, Ng et al. [2015]; Ng and Yoshida [2015] use param-

eterised MPST [Deniélou et al. 2012] to generate an MPI backbone in C that encapsulates the whole
protocol (i.e., every endpoint), and weaves (merges) it with user-supplied computation kernels.

Their approach fundamentally produces complete, “centralised” programs, due to lacking notions

of identifying and projecting role variants. By contrast, our toolchain generates typed APIs that

allow the programmer to implement an individual endpoint more flexibly, i.e., not tied to a specific

transport or messaging interface (MPI), nor a specific program structure.

López et al. [2015] develop a verification framework for MPI/C inspired by multiparty session

types by translating parameterised protocol specifications to protocols in VCC [Cohen et al. 2009].

Their VCC verification is driven by program annotations, e.g., to match up individual control flow

statements (e.g., if-else, while) to choices and loops in the specification, and pre/post conditions

on recursive functions. Their approach is purely global (i.e., monolithic) from an MPST perspective:

their specific aim is to verify a complete MPI program directly against a global protocol.

None of the remaining works in this paragraph support parameterised session types. Our API

generation builds on the basic idea of Hu and Yoshida [2016] for Java, which our framework

reformulates and extends for parameterised endpoints/families and nested FSMs in Go. Our API

design leverages Go features that Java lacks (e.g., type switch, select); and is augmented in a range

of ways, e.g., explicit error handling, nested struct types for peers/actions (which improves the IDE

ergonomics of our APIs, while bypassing Go’s lack of method overloading and reliance on singleton

types), and promoting End-results to assist linearity. They did not evaluate run-time performance.

Dynamic linearity checking is also employed in applications of session types in OCaml (Padovani

[2017]) and Scala (Scalas et al. [2017]); our toolchain supports an alternative callback-based API

generation that does not require dynamic checks. Gay et al. [2010] and Kouzapas et al. [2016] apply

session types to object-oriented languages via typestates [Strom and Yemini 1986]. Unlike our API

generation that targets programming in native Go, both are implemented as heavier-weight Java

extensions with new syntax. (By contrast, the approach we use could possibly be described as

statetypes.) As in our work and others above, these typestate approaches again rely on some form

of cross-cutting linearity analysis.

Verification of message passing programs in Go. Our work aims to promote protocol

compliance-by-construction in distributed programs through generation of types, to exploit light-

weight error detection while programming and other support from IDEs and compile-time tools

(e.g., "dot-driven" content assist and code auto-completion). Alternatively, the following are sev-

eral recent works on a posteriori verification of message passing in existing Go programs. All of

them employ whole-program techniques, and support only the built-in Go channel primitives (i.e.,
intra-process messaging); none of them, however, support channel-over-channel passing (§ 6.2).

Ng and Yoshida [2016] extract a graph-based protocol specification [Lange et al. 2015] from a

Go program that is checked for deadlock-freedom; Stadtmüller et al. [2016] extract a regex-based

protocol specification [Sulzmann and Thiemann 2016], checked for deadlock-freedom. Both ap-

proaches work only for programs restricted to synchronous Go channels; the former also requires all

goroutines to be spawned before any communication among them occurs, and the latter has limited
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support for branching behaviours. Lange et al. [2017, 2018] statically infer channel communication

patterns from a Go program as behavioural types, that are checked for liveness properties. The

earlier work focuses on their analysis, a bounded symbolic method that does not scale well to large

input models, and does not describe the inference procedure; it also does not take into account

channel aliasing. The later work puts forward a concrete inference algorithm (for a restricted subset

of Go) that considers channel aliasing. It checks the extracted types are restricted to finite control

(not required in our work), which is required by a subsequent verification of the types by model

checking; their model checker (mCRL2) also does not support channel passing, unlike our work

(e.g., Pget). Their verification is best-effort only, due to the imprecision of the inference, and the

verification times (and timeouts) preclude practical checking on the fly during programming.

The above works are the most related; we mention some further works in the Supplement
4
(§ V).

8 FUTUREWORK
We stated the conditions for concrete applications of our framework in § 2.1. We clarify further

limitations relevant to our aims in this paper, and how they may be addressed in future work.

Dynamic participants. Our framework supports protocols where the (parameterised) partici-

pants are fixed on session initiation, as standard in MPST. We plan to integrate with explicitly

(session-)typed connection actions [Hu and Yoshida 2017] for dynamic joining/leaving of param-

eterised participants during session execution; this would also eliminate some of the run-time

connection checks at endpoint initiation (§ 5.3). To do so, we will extend our well-formedness

based on the model checking approach of Hu and Yoshida [2017] for verifying MPST safety.

Failure handling. Our API generation is integrated with the explicit error handling paradigm of

Go, where errors include node and networking failures. Our API design and safety guarantees

currently consider the occurrence of such an error as a premature session termination (similar

to linearity violations). We will investigate extending our framework to fault-tolerant protocols,
e.g., for a session to continue between the remaining participants after one fails. We believe our

formalism developed in this paper, that interprets our extensions in terms of a core base theory

(§ 4), is well suited for such investigations: we may take one of the recent theoretical MPST works

on link failures [Adameit et al. 2017] or crash failures [Viering et al. 2018] as a base theory.

Programming styles. This paper focuses on an API style that is close to channel-based program-

ming using standard libraries and Go channels; our aim is to offer MPST-based programming

through a familiar interface to Go users, and to facilitate the reimplementation of existing Go

programs for our evaluation. The presented APIs promote a popular call-chaining programming

style (cf. fluent APIs) that permits some flexibility between more “imperative” or more “functional”

styles within the context of Go. We briefly illustrated our alternative callback-based API generation,

that inherently precludes run-time linearity checks, but requires programming in an event-driven

style—also a widely used style in practice. We plan to add further API generation styles, such as a

“monadic” or CPS-based style that relies less on side effects for input methods (cf. Fig. 5, line 17).

We note the necessary language features to implement (a basic version of) our approach are

relatively modest support for static typing of data and functions/methods. We have leveraged

additional Go specific features to produce better user APIs (e.g., type-switch and goroutines), but

they are inessential. We believe our approach may be readily ported to other languages, given that

we have demonstrated an implementation for Go whose type system is (by design) relatively bare.
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