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Abstract. Choreographic programming (CP) is a method to implement
distributed systems that ensures communication deadlock freedom by de-
sign. To use CP, though, the number of processes and the network among
them must be known statically. Often, that information is known only
dynamically. Thus, existing CP languages cannot be used to implement
process-parametric distributed systems.
This paper introduces first-person choreographic programming (1CP) to
support the implementation of process-parametric distributed systems
while also ensuring communication deadlock freedom. We present both
a design of 1CP (new calculus, formalised in Isabelle/HOL) and an im-
plementation (new language and tooling, integrated in VS Code).

1 Introduction

1.1 Background: Choreographic Programming

Implementing distributed systems is hard. One of the challenges is to “prove”—
broadly construed—the absence of communication deadlocks among message-
passing processes. A communication deadlock is a form of misbehaviour that
arises when all processes get stuck in cyclic communication dependencies.

Choreographic programming [3,5,39] is a top–down method to make the im-
plementation of distributed systems easier. Fig. 1a visualises the idea:

1. First, construct a global program G (“choreography”). A global program
defines the behaviour of all n processes in the distributed system, collectively.

Example 1. The TwoBuyer distributed system consists of processes Buyer1
(B1B1B1), Buyer2 (B2B2B2), and Seller (SSS). As introduced by Honda et al. [30]: “Buyer1
and Buyer2 wish to buy an expensive book from Seller by combining their
money. Buyer1 sends the title of the book to Seller, Seller sends to both
Buyer1 and Buyer2 its quote, Buyer1 tells Buyer2 how much she can pay,
and Buyer2 either accepts the quote or rejects the quote by notifying Seller.”
The following global program defines the behaviour of Buyer1, Buyer2, and
Seller, collectively (excerpt):

GTwoBuyer = B1B1B1."foo"_SSS.title ;

SSS.quote(title)_ [B1B1B1,B2B2B2].x ; //Seller computes the quote
B1B1B1.(x / 3)_B2B2B2.y ; //Buyer1 contributes 1/3

if B2B2B2.(x - y < x / 2) (. . .) (. . .) //Buyer2 contribs. at most 1/2
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Fig. 1: Choreographic programming

Global program p.E_q.y defines a communication of (the value of) expres-
sion E, from the process named p, to the process named q, into variable y.
Global programs if p.E G1 G2 and G1 ;G2 define conditional choice, at the
process named p, and sequencing. We write p.E_[q1 . . . , qn].y as a short-
hand for p.E_q1.y ; . . . ; p.E_qn.y. ut

2. Next, statically decompose the global program into local programs L1, L2,
. . . , Ln, by compiling G separately for each of the n processes. A local
program defines the behaviour of one process, individually.

Example 2. The following local programs, compiled from GTwoBuyer, define
the behaviour of Buyer1, Buyer2, and Seller, individually (excerpts):

LTwoBuyer
B1B1B1 = SSS !"foo" ; SSS?x ; B2B2B2 !(x / 2)

LTwoBuyer
B2B2B2 = SSS?x ; B1B1B1?y ; if (x - y < x / 2) (. . .) (. . .)

LTwoBuyer
SSS = B1B1B1?title ; B1B1B1 !quote(title) ; B2B2B2 !quote(title) ; (. . .)

Local programs q !E and p?y define a send to the process named q and a
receive from the process named p. ut

3. Last, dynamically (re)compose the local programs as processes into a dis-
tributed system by running them together, in parallel.

The main result of choreographic programming is that, if the compilation of G
succeeds for each process, then the run of L1, L2, . . . , Ln is free of communication
deadlocks. That is, we enjoy communication deadlock freedom by design.

Early work on choreographic programming is due to Carbone et al. [3,4] and
Carbone–Montesi [5]; substantial progress has been made since. For instance,
Montesi and Yoshida developed a theory of compositional choreographic pro-
gramming [40]; Carbone et al. studied connections with linear logic [2, 6, 7];
Dalla Preda et al. combined choreographic programming with dynamic adapta-
tion [45–47]; Cruz-Filipe et al. presented a technique to extract global programs
from local programs [14]; Giallorenzo et al. studied a correspondence with mul-
titier languages [26]. Furthermore, theoretical results are supported in practice
by several tools, including Chor [5], Choral [25,26], and HasChor [50].
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1.2 Open Problem: Process-Parametric Distributed Systems

Central to the compilation of global programs is the concept of static projection.
Formally, static projection is a function � that consumes a global program G
and a name p as input, and that produces a local program G � p as output.

Essentially, to decompose global program G into local programs, the compiler
statically projects G onto each name that occurs in G. In this way, the num-
ber of names that occur in G at compile-time fully determines the number of
processes that occur in the distributed system at run-time. In many distributed
systems, though, the number of processes that occur at run-time is known only
dynamically, not statically. Such distributed systems cannot be implemented
using existing choreographic programming languages.

Example 3. An AnyBuyer distributed system consists of processes Buyer1 (B1B1B1),
Buyer2 (B2B2B2), ..., Buyern (BBBn), and Seller (SSS). It generalises the TwoBuyer dis-
tributed system from two buyers to any number. Each buyer contributes a frac-
tion of the quote; Buyern decides to accept/reject. The following global programs
define the behaviour of all processes, collectively, for n ∈ {3, 4} (excerpts):

GThreeBuyer =

B1B1B1."foo"_SSS.title ;

SSS.quote(title)_ [B1B1B1,B2B2B2,B3B3B3].x ;

B1B1B1.(x / f) _B2B2B2.y ;

B2B2B2.(x / f + y)_B3B3B3.y ;

if B3B3B3.(x - y < x / f) (. . .) (. . .)

GFourBuyer =

B1B1B1."foo"_SSS.title ;

SSS.quote(title)_ [B1B1B1,B2B2B2,B3B3B3,B4B4B4].x ;

B1B1B1.(x / f) _B2B2B2.y ;

B2B2B2.(x / f + y)_B3B3B3.y ;

B3B3B3.(x / f + y)_B4B4B4.y ;

if B4B4B4.(x - y < x / f) (. . .) (. . .)

Each buyer has its own variables x, y, and f (initialised when the run begins).
Thus, for each n, a separate global program needs to be written: no existing

choreographic programming language supports parametrisation in n. However, n
is typically known only dynamically. As a result, realistically, AnyBuyer cannot
be implemented using choreographic programming. ut

Generally, existing choreographic programming languages require not only
the number of processes to be known statically (always one per name), but also
the network among them (always fully connected). These constraints seriously
limit the applicability of choreographic programming. Thus, the open problem
addressed in this paper is how to support process-parametric distributed
systems, in which such information is known only dynamically. Related work
suggests that this is difficult: in multiparty session typing (MPST) [30], in which
static projection is used to decompose global types into local types, extensions for
process parametricity lose decidability [51], soundness [41], or expressiveness [8].

1.3 This Paper

Whereas the decomposition of global types in MPSTmust happen statically (i.e.,
local types are used at compile-time), the decomposition of global programs in
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choreographic programming may—in principle—happen dynamically (i.e., local
programs are used only at run-time). That is, in contrast to MPST, there is no
fundamental reason in choreographic programming to insist on static projection.
This insight paves the way to a completely different approach to choreographic
programming based on dynamic projection. Exploring this approach is the aim
of this paper. To summarise the contributions:

– What: A novel approach, called first-person choreographic programming
– How: A new choreographic primitive, called continuation-passing communi-

cation, that enables dynamic projection (at run-time) of choreographies that
are still statically well-typed (at compile-time)

– Why: To implement process-parametric distributed systems using choreo-
graphic programming, including communication deadlock freedom by design

Concretely, we present both a design of first-person choreographic programming
(new calculus, formalised in Isabelle/HOL) and an implementation (new lan-
guage and tooling, integrated in VS Code). Sect. 2 presents an overview. Sect. 3
presents the design. Sect. 4 presents the implementation (including type checking
and interpretation; without code generation). The paper is concluded in Sect. 5.

2 Overview

2.1 Design: A Tour of First-Person Choreographic Programming

In existing choreographic programming languages, global programs are written
from the third-person point-of-view of the programmer. For instance, AAA.5_BBB.x
means “a communication from Alice to Bob” from the programmer’s point-of-
view. At heart, the key novelty of this paper is to shift the narrative perspective in
global programs to the first-person points-of-view of the processes. For instance,
5_BBB.x means “a communication from me to Bob” from Alice’s point-of-view.
This shift in perspective is instrumental for us to support process-parametricity.

We call the existing approach third-person choreographic programming (3CP)
and our new approach first-person choreographic programming (1CP). Fig. 1b
visualises the idea. We clarify it below and introduce our calculus along the way.

1. First, construct global programs G1, G2, . . . , Gm. Like in 3CP, each global
program in 1CP defines the behaviour of all processes, collectively. However:
– In 3CP, a single global program reflects multiple points-of-view, each

taken by one process.
– In 1CP, in contrast, multiple global programs each reflect a single point-

of-view, taken by one-or-more processes (process parametricity).

Example 4. To clarify the terminology and difference between 3CP and 1CP:
– In 3CP, TwoBuyer consists of three processes (Buyer1, Buyer2, Seller),

and three points-of-view (Buyer1, Buyer2, Seller; we overload the process
names when the correspondence is one-to-one), reflected by GTwoBuyer.
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– In 1CP, AnyBuyer consists of n+1 processes (Buyer1, ..., Buyern, Seller),
but three points-of-view (Buyer1, Buyer≥2, Seller), reflected by three
global programs. Thus, a single point-of-view (Buyer≥2) is taken by
more than one process (Buyer2, ..., Buyern). We note that Buyer1 has a
different point-of-view than Buyeri, for any i ≥ 2, as Buyer1 is initially
active (sends a message), whereas Buyeri is initially reactive (awaits a
message). In our calculus, the following global programs reflect this:

GAnyBuyer
B1B1B1 = . . . (Exmp. 5) //Point-of-view: Buyer1

GAnyBuyer
BiBiBi = skip //Point-of-view: Buyer≥2

GAnyBuyer
SSS = skip //Point-of-view: Seller

Global program skip defines a no-op. Thus, GAnyBuyer
BiBiBi and GAnyBuyer

SSS
define the absence of initial behaviour. ut

In more detail, each global program is written in terms of continuation-pass-
ing communications and choreographic procedures.

Example 5. To demonstrate continuation-passing communications, in our
calculus, the following global program reflects the point-of-view of Buyer1:

GAnyBuyer
B1B1B1 =

"foo"_SSS.title . //Active: Buyer1
quote(title)_B1B1B1.x . //Active: Seller

(x / f)_ neigh.y . //Active: Buyer1
contrib ; //Active: Buyer2

foreachBiBiBi neigh ∈ neighs do //Active: Seller
quote(title)_ neigh.x . //Active: Seller

contrib //Active: Buyeri, for any i ≥ 2

Global program E_ q.y . G defines a continuation-passing communication
– of (the value of) expression E, from an implicit active process,
– to the explicit reactive process named q, into variable y,
– followed by the asynchronous execution, by q, of global program G, writ-

ten from q’s point-of-view.
Thus, as the first active process, Buyer1 passes "foo" and a continuation—
written from Seller’s point-of-view—to Seller. When Seller receives, as the
next active process, it passes quote(title) and a continuation to Buyer1.
– When Buyer1 receives, as one of the now-active processes, it passes x / f

and a continuation to neigh (a reference to Buyer2). When Buyer2 re-
ceives, it calls choreographic procedure contrib.

– In parallel, Seller—still active—passes quote(title) and a continuation
to each neigh in neighs (a list of references to Buyer2, ..., Buyern).

This example demonstrates that, due to the asynchronous execution of con-
tinuations, multiple processes can become active in parallel. ut
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Intuitively, each occurrence of “.” signifies a lexical context switch in which
the previous active process passes a message and a continuation to the next
active process.1 In this way, continuation passing is a form of process-driven
dynamic projection: the processes at run-time tell each other how to behave
(from their first-person points-of-view), instead of a choreographic program-
ming tool at compile-time (from its third-person point-of-view).

Example 6. To demonstrate choreographic procedures, in our calculus, the
following choreographic libraries map choreographic procedure names to bod-
ies, for each of the three points-of-view in AnyBuyer:

ΨAnyBuyer
B1B1B1 = ∅ //Point-of-view: Buyer1

ΨAnyBuyer
BiBiBi = {contrib 7→ GAnyBuyer

contrib } //Point-of-view: Buyer≥2

ΨAnyBuyer
SSS = ∅ //Point-of-view: Seller

Thus, Buyer1 and Seller do not have choreographic procedures, while Buyeri,
for any i ≥ 2, has contrib. The following global program defines its body:

GAnyBuyer
contrib = if (x != 0 && y != 0)

if last

if (x - y < x / f) (. . .) (. . .)

(x / f + y)_ neigh.y . contrib

Thus, each time Buyeri calls contrib, it checks if x (quote) and y (contri-
bution up to Buyeri−1) are already set; 0 indicates unset. If so, and if last
(flag to indicate whether or not Buyeri is the n-th buyer) is true, then Buyeri
decides to accept/reject the quote; otherwise, using f (denominator of the
fraction that Buyeri can contribute), Buyeri passes x / f + y (total contribu-
tion up to Buyeri) and a continuation to neigh (reference to Buyeri+1).
Putting the pieces in this example and in Exmp. 5 together, Buyeri calls
contrib twice: once in a continuation passed to it by Seller (and the incoming
message sets x), and once in a continuation passed to it by Buyeri−1 (and
the incoming message sets y), but in any order (due to asynchrony). ut

2. Next, at compile-time, statically analyse each global program, including
the bodies of choreographic procedures, by means of type checking. Our main
result (Thm. 1) is that if each global program is well-typed, then any properly
initialised run of those global programs is free of communication deadlocks.
Proper initialisation means that the initial values of variables are well-typed;
this involves a lightweight check right at the beginning of a run. Thus, just
as third-person choreographic programming, first-person choreographic pro-
gramming guarantees communication deadlock freedom by design.

1 Passing code around in this way is a programming abstraction. It can be “compiled
away” and avoided at run-time; see the end of Sect. 4.2.
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Example 7. Intuitively, to ensure that none of the processes in AnyBuyer get
stuck, they must have the following variables and choreographic procedures:
– Buyer1: x, f (numbers) and neigh (process reference);
– Buyer2, ..., Buyern: x, y, f (numbers), last (boolean), neigh (process

reference), and contrib (choreographic procedure);
– Seller: title (string) and neighs (list of process references).

In our calculus, the following data/choreographic type environments capture
these assumptions, for each of the three points-of-view:

ΓAnyBuyer
B1B1B1 = {x 7→ Nat, f 7→ Nat, neigh 7→ Proc<BiBiBi>}

ΓAnyBuyer
BiBiBi = {x 7→ Nat, y 7→ Nat, f 7→ Nat, last 7→ Bool, neigh 7→ Proc<BiBiBi>}

ΓAnyBuyer
SSS = {title 7→ Str, neighs 7→ List<Proc<BiBiBi>>}

∆AnyBuyer
B1B1B1 = ∅ ∆AnyBuyer

BiBiBi = {contrib 7→ Chor[BiBiBi]} ∆AnyBuyer
SSS = ∅

Using these environments, we can statically prove that GAnyBuyer
B1B1B1 , GAnyBuyer

BiBiBi ,
GAnyBuyer

SSS , and GAnyBuyer
contrib (all defined in previous examples) are well-typed;

we do not need to know n to make this judgment. Thus, any properly ini-
tialised run—for any n—is free of communication deadlocks.
We note that the typing rules do not guarantee functional correctness. For
instance, if both Buyer2 and Buyer3 have a reference to Buyer4 in neigh,
then the system is deadlock-free (well-typed) but functionally incorrect. ut

3. Last, at run-time, dynamically create a configuration for each process, and
compose those configurations into a distributed systems by running them
together, in parallel. If the point-of-view of a process is p, then its initial
configuration is of the shape (Φ, Ψ,G), where:
– Φ defines the initial values of the variables of the process;
– Ψ defines the choreographic library from point-of-view p;
– G defines the behaviour of all processes, collectively, from point-of-view p.

Thus, all processes that have the same point-of-view, have the same choreo-
graphic library and the same global program in their initial configurations.
To be able to reference different processes that have the same point-of-view,
we use indexed names of the shape p[i], where p is a point-of-view, and i is
an index. We write just p as a shorthand for p[0].

Example 8. The following configurations initialise AnyBuyer for n = 4:

(Φp[i], Ψ
AnyBuyer
p , GAnyBuyer

p ) for p[i] ∈ {B1B1B1,BiBiBi[2],BiBiBi[3],BiBiBi[4],SSS}

where ΦB1B1B1 = {neigh 7→ BiBiBi[2], x 7→ 0, f 7→ 3}
ΦBiBiBi[2] = {neigh 7→ BiBiBi[3], x 7→ 0, y 7→ 0, f 7→ 5, last 7→ false}
ΦBiBiBi[3] = {neigh 7→ BiBiBi[4], x 7→ 0, y 7→ 0, f 7→ 8, last 7→ false}
ΦBiBiBi[4] = {neigh 7→ BiBiBi[4], x 7→ 0, y 7→ 0, f 7→ 2, last 7→ true }
ΦSSS = {neighs 7→ [BiBiBi[2],BiBiBi[3],BiBiBi[4]], title 7→ ""}

Each Φp[i] is well-typed in ΓAnyBuyer
p ; this is a near-trivial check. ut
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Example 9. To demonstrate a run, we show the first few reductions of the
configurations of Buyer1 and Seller in our calculus. First, the following con-
figurations are initial:

B1B1B1 7→ (ΦB1B1B1, ΨB1B1B1, "foo"_SSS.title . ((quote(title)_B1B1B1.x . G1) ;G2))

SSS 7→ (ΦSSS , ΨSSS , skip)

Next, Buyer1 passes "foo" and a continuation to Seller:

B1B1B1 7→ (ΦB1B1B1, ΨB1B1B1, skip)

SSS 7→ (ΦSSS , ΨSSS , title := "foo" ; (quote(title)_B1B1B1.x . G1) ;G2)

Global program x :=E defines the assignment of (the value of) E, to variable
x. Thus, as part of the communication from Buyer1 to Seller, the assignment
of the incoming message and the execution of the continuation are explicitly
scheduled to be executed by Seller, using sequencing.
Next, Seller executes the assignment. Let Φ′SSS = ΦSSS{title 7→ "foo"}:

B1B1B1 7→ (ΦB1B1B1, ΨB1B1B1, skip) SSS 7→ (Φ′SSS, ΨSSS, (quote(title)_B1B1B1.x . G1) ;G2)

Next, Seller passes the value of quote(title) (i.e., this expression is eagerly
evaluated at Seller instead of lazily at Buyer1) and a continuation to Buyer1.
Let Φ′SSSJquote(title)K = 123 (the evaluation of quote(title) in Φ′SSS):

B1B1B1 7→ (ΦB1B1B1, ΨB1B1B1, x := 123 ;G1) SSS 7→ (Φ′SSS, ΨSSS, G2)

Next, Buyer1 executes the assignment or, in parallel, Seller asynchronously
executes G2. And so on. ut

2.2 Implementation: 1CPLT by Example

About To explore how to possibly transfer the calculus from theory to practice,
we initiated the 1CPLT project. It consists of a prototype language, along with
proof-of-concept tooling (including modern editor support), to apply first-person
choreographic programming “for real”. It is built as an extension to VS Code.2

1CPLT includes a parser (implements the syntax of the calculus), a type
checker (static semantics), and an interpreter (dynamic semantics). The exam-
ples below demonstrate 1CPLT implementations of basic distributed systems
that are not supported by existing choreographic programming languages.

M-out-of-N First, we demonstrate the structure of the 1CPLT language.

Example 10. An M-out-of-N distributed system consists of processes Producer1,
..., Producern, and Consumer. A self-reference is communicated from each pro-
ducer to the consumer, unordered. The first m references received by the con-
sumer, from any subset of producers, are stored; the last n−m references are
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(a) Well-typed

(b) Ill-typed: Unexpected type

(c) Ill-typed: Unexpected procedure

Fig. 2: M-out-of-N in 1CPLT

lost. The consumer tells each producer whether or not its reference was stored.
There are two points-of-view: that of any producer and that of the consumer.

Fig. 2a shows a 1CPLT implementation of M-out-of-N.
Lines 1–14 contain two global blocks, each of which pertains to one point-

of-view. In general, each global block defines:

– the name of a point-of-view (e.g., Prod);
– the variables of any process that has that point-of-view (e.g., ok);
– a distinguished choreographic procedure main whose body is the initial global

program of any process that has that point-of-view (when main is absent, the
initial global program is assumed to be skip);

– additional choreographic procedures (none in this example) that constitute
the choreographic library of any process that has that point-of-view.

Lines 16–19 contain four process statements: each line defines an initial configu-
ration of a process in terms of the name of its point-of-view (e.g., Prod), its index
(e.g., 1; when absent, it is assumed to be 0), and its initial values of variables.

A key point is that only global blocks are needed for static type check-
ing, while process statements are needed only for dynamic execution.

We note that the consumer also uses each received reference p to reply. ut

2 https://github.com/microsoft/vscode

https://github.com/microsoft/vscode
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Next, we demonstrate two forms of modern editor support offered by 1CPLT
to improve the first-person choreographic programming experience.

Example 11. Fig. 2 shows that 1CPLT leverages two special features of VS Code:

– Inlay hints provide the programmer contextual information about the code,
displayed in grey font wherever relevant. In 1CPLT, inlay hints inform the
programmer about which process is active by prefixing code fragments with
process references, in the style of third-person choreographic programming.
For instance, “self.” on line 4 and “Cons.” on lines 6, 8–9, and 11, are inlay
hints: they are not part of the code fragments but inserted by 1CPLT’s inlay
hint generator. Inlay hints are intended to improve code comprehension.

– Code lenses allow the programmer to trigger contextual actions, displayed
as clickable text between lines of code (e.g., lines 16–19). In 1CPLT, “Sim-
ulate ...” uses the 1CPLT interpreter to run a simulation either of the full
distributed system or of one particular process. ut

Last, we demonstrate 1CPLT implementations with errors.

Example 12. Fig. 2b and Fig. 2c show examples of bugs caught by 1CPLT:

– In Fig. 2b, an unexpected message is passed from the consumer to a producer.
– In Fig. 2c, a continuation with an unexpected choreographic procedure call

is passed from the consumer to a producer.

In both cases, the consumer burdens a producer with input that it cannot handle,
which causes that producer to fail. The 1CPLT type checker, which implements
the typing rules of the calculus, detects this. ut

Even when m and n are fixed, most existing choreographic programming lan-
guages cannot be used to implement M-out-of-N. This is because these languages
have limited support for non-determinism, which is crucial in M-out-of-N. That
is, even when m and n are known statically, the order in which the consumer re-
ceives from the producers—and how to reply—is known only dynamically, which
is problematic. In contrast, the event-driven nature of this paper’s approach sup-
ports non-deterministic receives. Another notable exception is the recent work
by Plyukhin et al. [43], which offers special support for out-of-order execution.

Chang–Roberts In the remainder of this section, we further demonstrate the
expressiveness of 1CPLT (and, in turn, of the new calculus) by considering two
classical distributed algorithms. First, we consider a distributed algorithm for
leader election. This is the problem of computing a unique leader among the pro-
cesses in a distributed system. The Chang–Roberts algorithm solves the problem
for non-anonymous processes in a directed ring network [11].

Example 13. A Chang–Roberts distributed system consists of processes Node1,
..., Noden. Each node has a unique numeric identifier. The nodes elect the node
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(a) Clockwise

NNN[1]

NNN[2]NNN[3]

NNN[1]

NNN[2]NNN[3]

(b) Directions of the ring

(c) Anticlockwise

Fig. 3: Chang–Roberts

with the greatest identifier among them as the leader. There is only one point-
of-view: that of any node.

Fig. 3a shows a 1CPLT implementation of Chang–Roberts. As there is only
one point-of-view, there is only one global block. Each node has four variables:
a reference to its neighbour (neigh), its own identifier (x), the greatest identifier
it has received so far (y), and a flag to indicate whether or not it is elected (z).

First, as defined by choreographic procedure main, the identifier of each node
is passed to that node’s neighbour (i.e., each node is initially active). Next, as
defined by choreographic procedure forward, if the neighbour’s own identifier
is less than the incoming identifier, then the neighbour forwards the incoming
identifier to the neighbour’s neighbour. And so on. In this way, only the greatest
identifier is forwarded by all nodes and makes a full pass along the ring. When
a node receives its own identifier, it declares itself the leader. ut

Next, we demonstrate that the network among the processes can be initialised
at run-time, through the process references in their states.

Example 14. Fig. 3a and Fig. 3c show, on lines 15–17, definitions of two alterna-
tive sets of initial configurations for three nodes: a clockwise-directed ring and
an anticlockwise-directed ring. That is, statically, it is known that each node has
a neighbour, but only dynamically, it is known which one. ut

Even when the number of nodes and the neighbours of all nodes were fixed,
but not the identifiers,3 existing choreographic programming languages cannot
3 If the identifiers were fixed, the process with the greatest identifier would be known
already at compile-time, so there would be no need to elect a leader at run-time.
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(a) Global program

NNN[1] NNN[2]

NNN[3]NNN[4]

NNN[1] NNN[2]

NNN[3]NNN[4]

(b) Two possible topologies

(c) Processes for left topology

(d) Processes for right topology

Fig. 4: Echo

be used to implement Chang–Roberts. This is because the total number of com-
munications during a run (message complexity) depends on the assignment of
identifiers to nodes (key property of Chang–Roberts). For instance, if the identi-
fiers happen to be assigned in ascending order in the direction of the ring, then
2·n − 1 communications are needed. In contrast, if the identifiers happen to be
assigned in descending order, then 1/2·n2+1/2·n communications are needed. Ex-
isting choreographic programming language require at least n2 communications.

Echo Next, we consider a distributed algorithm for waves. This is the problem
of scattering/gathering information to/from all processes. The Echo algorithm
solves the problem for undirected networks of any topology [49].

Example 15. An Echo distributed system consists of processes Node1, ..., Noden.
One of the nodes acts as the initiator that triggers the wave. Each node except
the initiator goes through the following steps:
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1. Receive a message from any neighbour; it becomes the node’s parent.
2. Send a message to each non-parent neighbour.
3. Receive a message back from each non-parent neighbour.
4. Send a message to the parent.

The initiator skips steps 1 and 4, while it sends/receives a message to/from all
neighbours in steps 2 and 3. When step 3 of the initiator ends, it is guaranteed
that each node has participated (and has been given the opportunity to scatter/
gather information accordingly). Because the initiator and the non-initiators are
very similar, we consider there to be only one point-of-view: that of any node. In
general, there is some flexibility in determining the granularity at which points-
of-view are identified for a given distributed system; this is a design decision.

Fig. 4a shows a 1CPLT implementation of Echo. Each node has five vari-
ables: a flag to indicate “initiator-hood” (init), a constant list of references to
all neighbours (neighs), a list of references to all neighbours from which it has
received (senders), a reference to the parent neighbour (parent), and a reference
to the latest neighbour from which it has received (sender).

First, as defined by choreographic procedure main, each node checks if it is
the initiator (i.e., each node is initially active, but only one of them triggers the
wave). Next, as defined by choreographic procedure roll, the initiator sends a
message and a continuation to each neighbour (i.e., parent has self as dummy
initial value, which is not in neighs). Next, as defined by choreographic procedure
recv, each neighbour of the initiator:

– updates senders;
– if it is the first receive, then it sets its parent and calls roll to send a message

and a continuation to each neighbour (executed asynchronously by them);
– if it is the last receive, then it sends a message and a continuation back to

its parent. ut

Example 16. Fig. 4c and Fig. 4d show definitions of two alternative sets of initial
configurations for four nodes, each of which has a different topology. The figure
highlights that we need to write and statically analyse only one (collection of)
global program(s) that can subsequently be initialised for any network. ut

3 Design: Calculus of First-Person Choreographies

3.1 Organisation of the Section

Having introduced the main ingredients of the new calculus in Sect. 2.1, we
present the details in this section. In three separate subsections, we define the
syntax of the calculus (Sect. 3.2), its static semantics (Sect. 3.3), and its dynamic
semantics (Sect. 3.4). Our presentation in these sections is layered: the first layer
concerns “data to communicate”, while on top of that, the second layer concerns
“choreographies to communicate data”. A final subsection states our main result
(Sect. 3.5): communication deadlock freedom by design. All definitions, as well
as the main result, are formalised in Isabelle/HOL; see also the artifact [35].
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3.2 Syntax

Data We define the following syntax for data:
– Let X = {x, y, z, . . .} denote the set of variables, ranged over by x, y, z.
– Let P denote the set of point-of-view names, ranged over by p, q, r.
– Let T denote the set of data types, ranged over by T :

T ::= Proc<p>
∣∣ Bool ∣∣ Nat ∣∣ List<T> ∣∣ · · ·

We note that many more data types may be available, but this is orthogonal
to the contributions of this paper, so they are omitted here.

– Let V denote the set of values, ranged over by V :

VNat ::= 0
∣∣ 1 ∣∣ 2 ∣∣ · · ·

V ::= p[VNat]
∣∣ true ∣∣ false ∣∣ VNat

∣∣ [V1,...,Vn]<T>
∣∣ · · ·

Value p[VNat]—an “indexed point-of-view name”—defines a process reference.
Value [V1,...,Vn]<T> defines a list of length n with elements of data type T .

– Let E denote the set of expressions, ranged over by E:

E ::= x
∣∣ V ∣∣ !E ∣∣ E1 &&E2

∣∣ E1 ||E2

∣∣ · · ·
– Let X⇀ V denote the set of process states (partial functions from variables

to values), ranged over by Φ.

Choreographies We define the following syntax for choreographies:
– Let K denote the set of choreographic procedure names, ranged over by k.
– Let C = {Chor<p> | p ∈ P} denote the set of choreographic types.
– Let G denote the set of global programs, ranged over by G:

G ::= k
∣∣ skip

∣∣ x := E
∣∣ E1 _E2.y . G

∣∣ G1 ;G2

∣∣ if E G1 G2

∣∣ while E G

Global program k defines a call of choreographic procedure k. Global pro-
gram skip defines a no-op. Global program x := E defines an assignment
of (the value of) E, to variable x. Global program E1 _E2.y . G defines a
continuation-passing communication of (the value of) E1, to (the value of)
E2—“from an implicit active process to the explicit reactive process”—into
variable y, followed by the asynchronous execution of G. Thus, E1 is evalu-
ated to the value to communicate, while E2 is evaluated to (a reference to)
the process to communicate with. Global programs G1 ;G2, if E G1 G2, and
while E G define sequencing, conditional choice, and conditional iteration.
In Exmp. 5, we also used the following syntactic sugar:

foreachT x ∈ E do G ≡ _iterT := E ;

while !isNil(_iterT )

x := headOrDefault(_iterT , x) ;G ;

_iterT := tailOrDefault(_iterT , [])

Here, _iterT is a variable that contains a list of data type T .
– Let K⇀ G denote the set of choreographic libraries (partial functions from

choreographic procedure names to global programs), ranged over by Ψ .
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Γ (x) = T

Γ ` x : T
[`-Var]

Γ ` p[VNat] : Proc<p>
[`-Ref]

Γ ` true : Bool
[`-True]

Γ ` E : Bool
Γ ` !E : Bool

[`-Neg] · · · ∅ ` Φ(x) : Γ (x) for each x ∈ domΓ

` Φ : Γ
[`-State]

Fig. 5: Static semantics of data (excerpt)

3.3 Static Semantics

Data Let X⇀ T denote the set of all data type environments (partial functions
from variables to data types), ranged over by Γ . Let

Γ ` E : T and ` Φ : Γ

denote the well-typedness of E by T in Γ , and Φ by Γ . It is the relation induced
by the rules in Fig. 5:

– Rules [`-Var], [`-True], and [`-Neg] are standard [42].
– Rule [`-Ref] states that an indexed point-of-view name p[V ] (process refer-

ence) is well-typed by Proc<p>. Shortly, this judgment will allow us to make
assumptions about the presence/absence of variables and choreographic pro-
cedures in the configurations of any process p[V ] that has point-of-view p.

– Rule [`-State] states that a process state is well-typed when it has a well-
typed value for each variable in the data type environment.

Choreographies Let K⇀ C denote the set of choreographic type environments
(partial functions from choreographic procedure names to choreographic types),
ranged over by ∆. If R is a set of point-of-view names, then let

{Γr}r∈R, {∆r}r∈R ` G : Chor<p> and {Γr}r∈R, {∆r}r∈R ` Ψ : ∆

denote the well-typedness of G by Chor<p>, and Ψ by ∆, in families of environ-
ments {Γr}r∈R and {∆r}r∈R. It is the relation induced by the rules in Fig. 6:

– Rule [`-Call] states that a choreographic procedure call is well-typed when
that procedure exists and is well-typed.

– Rule [`-NoOp] states that a no-op is well-typed.
– Rule [`-Asgn] states that an assignment is well-typed from point-of-view p

when the variable and the expression are well-typed by the same type in the
data type environment of p.

– Rule [`-Comm] states that a continuation-passing communication is well-
typed from point-of-view p (input of the rule, algorithmically) when:
• the type of the expression from point-of-view p (first premise), and the

type of the variable from point-of-view q (third premise), are the same;
• the receiver has point-of-view q (second premise);
• the continuation is well-typed from point-of-view q (fourth premise).
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Let Γ = {Γr}r∈R, let ∆ = {∆r}r∈R, and let p ∈ R, s.t. Γ(p) = Γp and ∆(p) = ∆p.

∆(p)(k) = Chor<p>
Γ,∆ ` k : Chor<p>

[`-Call]
Γ,∆ ` skip : Chor<p>

[`-NoOp]

Γ(p)(x) = T Γ(p) ` E : T

Γ,∆ ` x := E : Chor<p>
[`-Asgn]

Γ(p) ` E1 : T Γ(p) ` E2 : Proc<q> Γ(q)(y) = T Γ,∆ ` G : Chor<q>
Γ,∆ ` E1 _E2.y . G : Chor<p>

[`-Comm]

Γ,∆ ` G1 : Chor<p> Γ,∆ ` G2 : Chor<p>
Γ,∆ ` G1 ;G2 : Chor<p>

[`-Seq]

Γp ` E : Bool Γ,∆ ` G1 : Chor<p> Γ,∆ ` G2 : Chor<p>
Γ,∆ ` if E G1 G2 : Chor<p>

[`-If]

Γp ` E : Bool Γ,∆ ` G : Chor<p>
Γ,∆ ` while E G : Chor<p>

[`-While]

Γ,∆ ` Ψ(k) : ∆(k) for each k ∈ dom∆

Γ,∆ ` Ψ : ∆
[`-Lib]

Fig. 6: Static semantics of choreographies

ΦJxK = Φ(x)

ΦJV K = V
ΦJ!EK =

{
true if ΦJEK = false
false otherwise

· · ·

Fig. 7: Dynamic semantics of data (excerpt)

This rule is the reason why families of data/choreographic type environ-
ments are needed in the judgments instead of individual environments: as
we “cascade” along continuation-passing communications, at each next level,
different environments are needed than at the previous level.

– Rules [`-Seq], [`-If], and [`-While] are straightforward.
– Rule [`-Lib] states that a choreographic library is well-typed when it has a

well-typed global program for each name in the library.

We note that checking well-typedness is decidable and, in fact, linear in the size
of the global program (because the typing rules are syntax-directed).

3.4 Dynamic Semantics

Data Let ΦJEK denote the evaluation of E in Φ. It is the smallest function
induced by the equations in Fig. 7. We note that the function is only partially
defined. For instance, ∅JxK and ΦJ!123K are undefined. Undefinedness is poten-
tially problematic: it causes processes to get stuck, which in turn causes com-
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(Φ, Ψ, skip) ↓ [↓-NoOp]
(Φ, Ψ,G1) ↓ (Φ, Ψ,G2) ↓

(Φ, Ψ,G1 ;G2) ↓
[↓-Seq]

Ψ(k) = G

(Φ, Ψ, k)
τ−→ (Φ, Ψ,G)

[→-Call]
Φ{x 7→ ΦJEK} = Φ′

(Φ, Ψ, x := E)
τ−→ (Φ′, Ψ, skip)

[→-Asgn]

ΦJE1K = V ΦJE2K = q[j]

(Φ, Ψ,E1 _E2.y . G)
q[j] !(y := V ;G)−−−−−−−−−−−→ (Φ, Ψ, skip)

[→-Send]

(Φ, Ψ,G1)
p[i]?G2−−−−−→ (Φ, Ψ,G1 ;G2)

[→-Recv]

(Φ, Ψ,G1)
A−→ (Φ′, Ψ,G′

1) A 6= p[i]?G for each p[i], G

(Φ, Ψ,G1 ;G2)
A−→ (Φ′, Ψ,G′

1 ;G2)
[→-Seq1]

(Φ, Ψ,G1) ↓ (Φ, Ψ,G2)
A−→ (Φ′, Ψ,G′

2) A 6= p[i]?G for each p[i], G

(Φ, Ψ,G1 ;G2)
A−→ (Φ′, Ψ,G′

2)
[→-Seq2]

ΦJEK = true

(Φ, Ψ, if E G1 G2)
τ−→ (Φ, Ψ,G1)

[→-If1]
ΦJEK = false

(Φ, Ψ, if E G1 G2)
τ−→ (Φ, Ψ,G2)

[→-If2]

ΦJEK = true

(Φ, Ψ,while E G)
τ−→

(Φ, Ψ,G ; while E G)

[→-While1]
ΦJEK = false

(Φ, Ψ,while E G)
τ−→

(Φ, Ψ, skip)

[→-While2]

Fig. 8: Dynamic semantics of choreographies (part 1)

munication deadlocks among processes. However, using the static semantics of
the previous section, undefinedness at run-time is detected at compile-time.

Choreographies Let A denote the set of actions (labels), ranged over by A:

A ::= q[j] !G
∣∣ p[i]?G ∣∣ τ

Actions q[j] !G and p[i]?G define a send and a receive of global program G from
process p[i] to process q[j]. In this paper, G is of the form y := V ;G′, where V
and G′ are a message and a continuation. Action τ defines an internal action.

Let (Φ, Ψ,G) ↓ and (Φ, Ψ,G)
A−→ (Φ′, Ψ ′, G′) denote the termination of con-

figuration (Φ, Ψ,G) and the reduction of source configuration (Φ, Ψ,G) to target
configuration (Φ′, Ψ ′, G′) through action A. They are the relations induced by
the rules in Fig. 8:

– Rule [↓-NoOp] states that a no-op can terminate.
– Rule [↓-Seq] states that sequencing can terminate when the operands can.
– Rule [→-Call] states that a call can reduce to the body of the corresponding

choreographic procedure through an internal action.
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– Rule [→-Asgn] states that an assignment can reduce to a no-op through an
internal action, while the state in the configuration is updated accordingly.

– Rule [→-Send] states that a continuation-passing communication can reduce
to a no-op through a send. The outgoing global program contains the message
and the continuation. In this way, continuation-passing is a form of process-
driven dynamic projection: the sender at run-time tells the receiver how
to behave (from its first-person point-of-view), instead of a choreographic
programming tool at compile-time (from its third-person point-of-view).

– Rule [→-Recv] states that any global program can reduce through a receive.
The first operand of the resulting sequence is the original global program; the
second operand is the incoming global program, which contains a message
and a continuation. In this way, the incoming global program is explicitly
scheduled to be run, but only when all existing work is done. Thus, scheduling
is non-preemptive, reminiscent of event-driven programming.
We note that there is a difference between: (1) the “physical receive” that
takes the message/continuation off-network (happens when rule [→-Recv]
is applied, and G2 is appended to G1); (2) the “logical receive” that actually
processes the message/continuation (happens when the reduction of G1 is
finished, and the reduction of G2 is started). Because of this decoupling, no
explicit receive operations need to be defined in global programs: they hap-
pen implicitly, at any time, induced by the dynamic semantics (in practice,
the run-time system takes care of this). This is reminiscent of: (1) buffering
a message in a local event queue; (2) taking that message out of the event
queue in a later iteration of the event loop to process it.

– Rules [→-Seq1] and [→-Seq2] are standard in the dynamic semantics of
imperative languages [1] and process algebra [22], except that receives are
excluded. Thus, receives happen only at the top-level and cannot preempt.

– Rules [→-If1], [→-If2], [→-While1], and [→-While2] are standard in the
dynamic semantics of imperative languages [1] and process algebra [22].

We note that choreographic procedures enhance expressiveness relative to
conditional iteration: not every recursive call can be simulated with while. The
difference is that each iteration of while must start at the same process (the
active process in the loop’s enclosing scope), while each recursive call may start
at a different process (the active process in the call site’s enclosing scope).

If Π is a set of indexed point-of-view names, ranged over by π, then let

{(Φπ, Ψπ, Gπ)}π∈Π ↓ and {(Φπ, Ψπ, Gπ)}π∈Π −→ {(Φ′π, Ψ ′π, G′π)}π∈Π

denote the termination and reduction of families of configurations. That is, each
configuration models a process, while the family models the distributed system.
Formally, ↓ and → are the relations induced by the rules in Fig. 9:

– Rule [↓-Sys] states that a family can terminate when each of its configu-
rations can terminate. This rule is standard in the dynamic semantics of
parallel composition in process algebra [22].
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(Φπ, Ψπ, Gπ) ↓ for each π ∈ Π
{(Φπ, Ψπ, Gπ)}π∈Π ↓

[↓-Sys]

(Φp[i], Ψp[i], Gp[i])
τ−→ C′

p[i] p[i] ∈ Π
{(Φπ, Ψπ, Gπ)}π∈Π −→ {(Φπ, Ψπ, Gπ)}π∈Π\{p[i]} ∪ {C′

π}π∈{p[i]}
[→-Sys1]

(Φp[i], Ψp[i], Gp[i])
q[j] !G−−−−→ C′

p[i] p[i] ∈ Π
(Φq[j], Ψq[j], Gq[j])

p[i]?G−−−−→ C′
q[j] q[j] ∈ Π \ {p[i]}

{(Φπ, Ψπ, Gπ)}π∈Π −→ {(Φπ, Ψπ, Gπ)}π∈Π\{p[i],q[j]} ∪ {C′
π}π∈{p[i],q[j]}

[→-Sys2]

(Φp[i], Ψp[i], Gp[i])
p[i] !G−−−−→ C′

p[i]
p[i]?G−−−−→ C′′

p[i] p[i] ∈ Π
{(Φπ, Ψπ, Gπ)}π∈Π −→ {(Φπ, Ψπ, Gπ)}π∈Π\{p[i]} ∪ {C′′

π}π∈{p[i]}
[→-Sys3]

Fig. 9: Dynamic semantics of choreographies (part 2)

– Rule [→-Sys1] states that a family can reduce when one of its configura-
tions can reduce through an internal action. This rule models independent
evolution of processes in the absence of communication dependencies.

– Rule [→-Sys2] states that a family can reduce when one of its configurations
can reduce through a send, while another configuration can reduce through
a corresponding receive. This rule models communication between processes.
We note that the send and the physical receive are synchronous (as usual in
choreographic programming), but the logical receive is asynchronous.

– Rule [→-Sys3] states that a family can reduce when one of its configurations
can reduce through a self-communication (first a send, next the receive, by
one process). This allows a process to schedule work for itself for a later time.
We note that the (self-)send and the physical (self-)receive are, like in rule
[→-Sys2], effectively synchronous (i.e., the two reductions in the premise
result in a single reduction in the conclusion), but they need to be ordered.

3.5 Main Result: Communication Deadlock Freedom by Design

Soundness The following theorem states our main result. To formulate it, let
{(Φp[i], Ψp, Gp)}p[i]∈Π denote an initial family of configurations, where:

– Π denotes a set of indexed point-of-view names (process references);
– Φp[i] denotes an initial state for each p[i] ∈ Π;
– Ψp and Gp denote a choreographic library and an initial global program for

each point-of-view p ∈ {p | p[i] ∈ Π} (i.e., processes of the same point-of-
view, have the same choreographic library and initial global program).

Now, the initial family of configurations either reduces finitely many times and
terminates, or it reduces infinitely many times (i.e., it never gets stuck, so we
enjoy communication deadlock freedom), when the following conditions are met:

1. Each choreographic library Ψp is well-typed. This is a static check.
2. Each initial global program Gp is well-typed. This is a static check.
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3. Each initial state Φp[i] is well-typed. This is a lightweight dynamic check,
part of initialisation (input validation).

4. The family of configurations is closed : if a process is referenced in a configu-
ration, then it must have a configuration in the family. This is a lightweight
dynamic check, part of initialisation (network validation). In the theorem
below, let refs({(Φp[i], Ψp, Gp)}p[i]∈Π) denote the set of process references
that occur in any configuration of the family.

Intuitively, the static checks ensure that, if the initial configurations are proper,
then a process never passes a continuation to another process that cannot run to
completion: well-typedness guarantees that expected variables of expected types,
as well as expected choreographic procedures, actually exist. Complementarily,
the lightweight dynamic checks ensure that the initial configurations are proper.

Theorem 1. Let R = {p | p[i] ∈ Π}. Assume:

1. Statically: {Γr}r∈R, {∆r}r∈R ` Ψp : ∆p for each p ∈ R
2. Statically: {Γr}r∈R, {∆r}r∈R ` Gp : Chor<p> for each p ∈ R
3. Dynamically: ` Φp[i] : Γp for each p[i] ∈ Π
4. Dynamically: refs({(Φp[i], Ψp, Gp)}p[i]∈Π) ⊆ Π

If {(Φp[i], Ψp, Gp)}p[i]∈Π −→∗ C ′, then either C ′ ↓, or C ′ −→ C ′′, for some C ′′.

We formalised all the definitions of this section in Isabelle/HOL and mecha-
nised the proof of this theorem and all auxiliary lemmas. The following outline
summarises the main steps and structure. See the Isabelle/HOL code for details.
Extending this result to livelock is left for future work.

Proof (outline). The proof of Thm. 1 is split into two parts: progress and preser-
vation. Progress states that if the four assumption hold for a family, then that
family can either terminate or reduce. Preservation states that if the four as-
sumptions hold for a source family, and if that source family reduces to a target
family, then the four assumptions also hold for the target family. Thus, if the four
assumptions hold for the initial family, then by applying progress and preserva-
tion inductively, we obtain the main result in Thm. 1. The proofs of progress and
preservation use several forms of induction (on the structure of the terms; on
the derivation of the judgments), nested inside each other through lemmas. ut

Expressiveness Expressiveness of choreographic programming calculi can be
measured along (at least) two relevant dimensions:

– Computability: Which classes of functional behaviour can be expressed?
– Message complexity: How many messages are needed and in which patterns?

Regarding computability, it has been shown that a simple core calculus of chore-
ographies is Turing-complete (e.g., [16]). That calculus can be trivially embedded
in ours. Regarding message complexity, none of the existing choreographic pro-
gramming languages we know of supports all realisable regular message patterns
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static part M dynamic part O

ΦNNN[1] = {neigh 7→ NNN[2], x 7→ 5, . . .}
ΦNNN[2] = {neigh 7→ NNN[3], x 7→ 6, . . .}
ΦNNN[3] = {neigh 7→ NNN[1], x 7→ 7, . . .}

ΨNNN =


forward 7→ if x < y

y_ neigh.y .

forward

z := x == y



GNNN = x_ neigh.y . forward

ΓNNN = {neigh 7→ Proc[NNN], x 7→ Nat, . . .}

Fig. 10: Correspondence between 1CPLT and the calculus

(i.e., message patterns that can be specified with a regular expression over syn-
chronous communications; e.g., M-out-of-N for any concrete m and n). In con-
trast, in addition to supporting parametricity, we conjecture that our approach
also supports all realisable regular message patterns.

4 Implementation: 1CPLT

4.1 From Theory to Practice

The calculus presented in the previous section is expressive, but it(s notation)
is unwieldy to use directly to implement distributed systems. With the devel-
opment of 1CPLT, demonstrated in Sect. 2.2, we set out to explore how to
possibly transfer the calculus from theory to practice, in a way that intuitively
and concisely hides its complexities; see also the artifact [35].

Fig. 10 demonstrates the correspondence between the concrete syntax of
1CPLT and the ingredients of the calculus. Inspired by classes in object-oriented
programming, the idea is to combine, for each point-of-view, the declarations of
variables and the definitions of choreographic procedures in the same “unit”
(global block), using a special choreographic procedure (main) to define the
initial global program. This is all the information needed for static type checking.
For simulation purposes, the creation of configurations is expressed separately
(process statements) by defining the initial values of variables for each process.

4.2 Technical Details

General 1CPLT is implemented in Rascal [38], a meta-programming environ-
ment geared towards implementing programming languages. Among other fea-
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tures, the Rascal language has core support to write context-free grammars (for
defining concrete syntax), algebraic data types (for defining abstract syntax),
and advanced pattern matching on grammar rules and ADT constructors. To-
gether with standard programming abstractions, these features aim to simplify
the implementation of parsers, type checkers, interpreters, and code generators.

Parsing The parser consumes a .1cp file as input and produces as output:

– for each point-of-view: abstract syntax trees for a data type environment, a
choreographic type environment, and a choreographic library (global block);

– for each process: abstract syntax trees for an initial state (process stmnt).

The parser proceeds in two steps:

1. First, it transforms the input file into a concrete syntax tree using the 1CPLT
grammar. For instance, the following production rules in the 1CPLT gram-
mar define the concrete syntax of assignments and communications (simpli-
fied to save space; see the artifact for the full version):

1 syntax ChorExpression
2 = ...
3 | Identifier ":=" DataExpression
4 | DataExpression "->" DataExpression "." Identifier "|>" ChorExpression
5 | ... ;

2. Next, the parser transforms the concrete syntax tree into an abstract version
using algebraic data types. For instance, the following constructors define the
abstract syntax of assignments and continuation-passing communications
(simplified to save space; see the artifact for the full version):

1 data CHOR_EXPRESSION(loc src = |unknown :///|)
2 = ...
3 | asgn(str x, DATA_EXPRESSION e)
4 | comm(DATA_EXPRESSION e, DATA_EXPRESSION qj , str y, CHOR_EXPRESSION c)
5 | ... ;

We note that each constructor has an optional argument src (declared on line
1), which associates each value of a constructor with a particular location
in the input file (loc is a core data type in Rascal for locations). This is
essential for the type checker to generate properly located error messages.

Type checking The type checker consumes abstract syntax trees as input and
produces a list of error messages as output; the list is empty if, and only if, the
input is well-typed. Essentially, the type checker implements the typing rules in
the static semantics of the calculus. For instance, the following code type-checks
asgn constructors (simplified to save space; see the artifact for the full version):

1 data CHOR_CONTEXT = context(
2 map[str /* pov */, map[str /* data variables */, DATA_TYPE ]] gammas ,
3 map[str /* pov */, map[str /* chor variables */, CHOR_TYPE ]] deltas) ;
4

5 list[Message] check(chor(p), CHOR_CONTEXT c, tree: asgn(x, e))
6 = [error("Unexpected data variable", tree.src) | x notin c.gammas[p]]
7 + [*check(c.gammas[p][x], context(c.gammas[p]), e) | x in c.gammas[p]] ;

For reference and comparison, typing rule [`-Asgn] ( Fig. 6) is reproduced below.
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Γ(p)(x) = T Γ(p) ` E : T

Γ,∆ ` x := E : Chor<p>

Lines 1–3 define a general ADT for choreo-
graphic type environments. Line 5 declares the
arguments to type-check asgn constructors, each
of which corresponds with a variable in the conclusion of the typing rule: p with
p, c with Γ and ∆, x with x, and e with e; tree is just a shorthand for asgn(x, e).

Line 6 checks if x exists in the data type environment of p; if not, an error
message is generated. The second argument of constructor error is the location
in the input file where the error message should be displayed. Line 7 recursively
calls function check to collect all error messages that result from type-checking
data expression e (E) against data type c.gammas[p][x] (Γ(p)(x)) in data en-
vironment c.gammas[p] (Γ(p)). This is expressed using Rascal’s notation for list
comprehension: [x | P(x), Q(x), ...] constructs a list such that each x satisfies
the conjunction of P(x), Q(x), ... Operator * splices a list into another list.

The functions to type-check the other constructors are defined similarly.

Interpretation The interpreter consumes abstract syntax trees as input (initial
states and choreographic libraries) and produces a simulation as output. Essen-
tially, the interpreter implements the reduction rules of the dynamic semantics
of the calculus. For instance, the following code reduces asgn constructors (sim-
plified to save space; see the artifact for the full version):

1 tuple[CHOR_STATE , CHOR_EXPRESSION] reduce(<state(phi , psi , {}), asgn(x, e)>)
2 = <state(phi + (x: eval(phi , e)), psi , {}), skip()> ;

Line 1 declares that function reduce consumes a source configuration as input
(i.e., the arguments are directly destructured using pattern matching). Line 2 de-
fines that function reduce produces a target configuration as output by updating
the value of x in phi, in accordance with rule [→-Asgn] (Fig. 8).

The functions to reduce the other constructors are defined similarly.
Before each simulation, it is also checked whether or not each initial process

state is well-typed, as well as closedness (points 3–4 of Thm. 1).

Code generation (outlook) We aim to extend 1CPLT with a code generator
to be able to deploy 1CPLT implementations on real networks.

The most interesting aspect of such a code generator is that it should “compile
away” continuation-passing: while continuation-passing is instrumental in our
approach as a programming abstraction, physically passing around code-to-be-
executed tends to be problematic in terms of security, privacy, and performance.
Instead, we envisage a static transformation in which: (a) for each continuation,
a choreographic procedure is introduced with a random label; (b) instead of
passing the continuation, only the random label is passed.

5 Conclusion

5.1 Related Work

Process-parametric MPST Close to the work in this paper, in terms of start-
ing point and aim, are several extensions of multiparty session typing (MPST)
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[30] to support process-parametricity. First, Deniélou et al. [51] designed a de-
pendently typed calculus to support process-parametricity, but the resulting
typing relation is undecidable and was never implemented. Next, taking the op-
posite approach, Ng and Yoshida [41] implemented an extension of the Scribble
tools for MPST [31, 32], called Pabble, to support process-parametricity, but
it was never formalised and does not provide type-soundness guarantees. Last,
Castro et al. [8] presented a calculus (all static analysis decidable) and a tool
(formalised by the calculus) to support process-parametricity, but the expressive-
ness is limited (many distributed systems remain unsupported, including those in
Sect. 2.2), while the static analysis algorithm is of exponential complexity. Thus,
there is tension between decidability, soundness, and expressiveness.4 However,
by developing process-driven dynamic projection through continuation-passing
communications (which diverges considerably from classical static MPST), our
approach in this paper manages to combine these properties.

Dynamic projection Shen et al. [50] developed a choreographic programming
library in Haskell, called HasChor, that uses dynamic projection to be able to
build their library on top of the freer monad [37]. In this way, dynamic projec-
tion is primarily an implementation mechanism in HasChor. HasChor does not
support process-parametricity, and it has not been formalised yet.

In MPST, dynamic projection has been studied by Hamers et al. [27, 34]
in the form of a run-time verification framework based on global types, called
Discourje. Discourje also supports process-parametricity, but it imposes run-time
overhead, as all analysis happens dynamically. In contrast, the analysis in this
paper happens almost completely statically.

Behavioural-typed actors/mailboxes The event-driven nature of our ap-
proach to choreographic programming is reminiscent of programming methods
based on event loops/queues and asynchronous execution of event handlers. Clos-
est in this area is the work on behavioural typing of actors and mailboxes by
Fowler et al. [23, 24], De’Liguoro and Padovani [21], and Scalas et al. [48].

More fundamentally, we speculate that a deeper connection may be uncov-
ered between actors/mailboxes and the approach in this paper. Our initial ob-
servation is that a mailbox-based runtime for 1CPLT (in combination with code
generation; end of Sect. 4.2) would align perfectly with the dynamic semantics
of our calculus—much more so than a (point-to-point) channel-based runtime
would. This leads us to hypothesise that mailbox-based actors are to first-person
choreographies what (point-to-point) channel-based processes are to third-person
choreographies. That is, the following table would be completed:

4 While we are not aware of any formal results about inherent limitations of static
projection, we strongly suspect such limitations exist (because, fundamentally, fewer
information is available at compile-time than at run-time).
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global model of concurrency
(at development-time)

(third-person)
choreographies ??? ⇐= 1CP

local model of concurrency
(at deployment-time)

processes
+ channels

actors +
mailboxes

behavioural typing discipline session types mailbox types

Proof mechanisation In recent years, mechanisation of choreographic pro-
gramming theory has received considerable attention, including the work of
Cruz-Felipe et al. [15, 17–20], Hirsch and Garg [29], and Pahjola et al. [44].
Similar initiatives for behavioural typing include the work of Castro et al. [9,10],
Hinrichson et al. [28], and Jacobs et al. [33]. Thus, the mechanisation of our
proofs in Isabelle/HOL follows this trend in our community.

5.2 Future Work

On the theoretical side, we identify two directions for future work. First, we are
keen to investigate the integration of dependent typing into our approach, to sup-
port arbitrary expressions as indices of point-of-view names (process references)
instead of only values. Second, it will be interesting to develop dedicated testing
and verification techniques for first-person choreographies, following recent work
for third-person choreographies (e.g., [12, 13,36]).

Another interesting question is whether a first-person approach could also be
applied in MPST. Most MPST theories have a tight correspondence between the
syntax of global/local types and the syntax of processes. If this correspondence
is kept tight (i.e., a first-person approach is used both in global/local types and
in processes), then we expect it to be possible—but still non-trivial—to develop
typing rules accordingly and prove soundness. These typing rules would not rely
on projection, but verify processes directly against global types. An alternative
(presumably more challenging, but arguably more usable) would be to develop an
MPST theory in which the correspondence is loosened: combining a first-person
approach in global types with a more conventional style for processes.

On the practical side, in combination with an extension of 1CPLT with a code
generator (Sect. 4.2), we are eager to conduct a case study on Paxos. This is a
popular (family of) distributed algorithm(s) for consensus. Paxos has a number
of properties (particularly related to non-determinism) that are fundamentally
hard to support with third-person choreographies. We believe first-person chore-
ographies can address these issues.

Data Availability Statement

The artifact is available on Zenodo [35]. It contains: (1) the calculus in Is-
abelle/HOL; (2) the language and tooling in VS Code.
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