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Abstract. Construction and analysis of distributed systems is difficult;
choreographic programming is a deadlock-freedom-by-construction ap-
proach to simplify it. In this paper, we present a new theory of chore-
ographic programming. It supports for the first time: construction of
distributed systems that require decentralised decision making (i.e., if/
while-statements with multiparty conditions); analysis of distributed sys-
tems to provide not only deadlock freedom but also functional correctness
(i.e., pre/postcondition reasoning). Both contributions are enabled by a
single new technique, namely a predicate transformer for choreographies.

1 Introduction

Construction and analysis of distributed systems that consist of message passing
processes is hard. Typical challenges include providing deadlock freedom (i.e., the
processes never get stuck) and functional correctness (i.e., the processes com-
pute the intended outcome). Choreographic programming [8,9,10] is a deadlock-
freedom-by-construction approach to make implementation and verification of
distributed systems easier. In this paper, to address two limitations of existing
theories, we present a new theory of choreographic programming. It supports for
the first time: construction of distributed systems that require decentralised
decision making; analysis of distributed systems to provide not only deadlock
freedom but also functional correctness.

1.1 Background: Choreographic Programming by Example

To explain choreographic programming, consider a distributed system in which
two processes enact roles Client and Server. First, a username and password are
communicated from Client to Server. Next, Server checks Client’s credentials and
informs Client about the outcome: if authentication succeeded, the execution
continues; if it failed, it ends. We construct and analyse this system as follows:

1. Initially, we write a global program G (“the choreography”); it prescribes
the behaviour of all roles, collectively, from their shared perspective.

C."foo"_S.x ; C.123_S.y ; if S.auth(x,y) (S.SUCC_C ;G′) (S.FAIL_C)
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all construction/analysis
activities happen here (manual)

all deployment/execution
activities happen there (automatic)
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local programs

Fig. 1: Workflow of choreographic programming

In this notation, p.e_q.y prescribes a value communication to share data
from role p to role q: expression e is evaluated at p, sent at p, received at q,
and stored in variable y at q. Similarly, p.`_q prescribes a label communi-
cation to share decisions: label ` is actively selected at p (“internal choice”),
sent at p, received at q, and passively branched on at q (“external choice”).
Furthermore, G1 ;G2 and if r.e G1 G2 prescribe a sequence and a conditional
choice (i.e., if e is evaluated to true at r, then G1 is executed, or else G2).
Now, informally, the first theorem of choreographic programming is this:

Theorem 1 (Deadlock Freedom). Every global program is deadlock-free.

2. Subsequently, we decompose global program G into local programs LC
and LS (“the processes”), using a projection function; every local program
prescribes the behaviour of one role, individually, from its own perspective.

Client: CS !"foo" ; CS !123 ; SC?{SUCC : L′
C , FAIL : skip}

Server: CS?x ; CS?y ; if S.auth(x,y) (SC !SUCC ; L′
S) (SC !FAIL)

In this notation, pq !e and pq?y prescribe a send and a receive of a value from
p to q. Similarly, pq !` and pq?{`i : Li}i∈I prescribe a send and a receive of a
label (i.e., if `j is received for some j ∈ I, then Lj is executed).
Now, informally, the second theorem of choreographic programming is this:

Theorem 2 (Operational Equivalence). Every well-formed global pro-
gram is operationally equivalent to the parallel composition of its projections.

“Well-formedness” is a syntactic condition on global programs; we discuss it
in more detail later. Here, we just claim that G above is indeed well-formed.

3. Finally, we compose local programs LC and LS in parallel (“the distributed
system”), by deploying them concurrently, and by executing them at their
own pace; as they run, LC and LS send and receive messages as prescribed.
Now, Thm. 1 and Thm. 2 together entail that LC and LS are deadlock-free,
by construction, without extra analysis. Figure 1 summarises the workflow.

1.2 Related Work: State of the Art & Open Problems

Early work on choreographic programming was presented by Carbone et al.
[8,9] (using binary session types [34]) and by Carbone and Montesi [10] (using
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multiparty session types [35]); substantial progress has been made since. For in-
stance, Montesi and Yoshida developed a theory of compositional choreographic
programming that supports open distributed systems [42]; Carbone et al. stud-
ied connections between choreographic programming and linear logic [11,12,7];
Dalla Preda et al. combined choreographic programming with dynamic adapta-
tion [48,46,47]; Cruz-Filipe and Montesi developed a minimal Turing-complete
language of global programs [16,19]; Cruz-Filipe et al. presented a technique to
extract global programs from families of local programs (“choreography extrac-
tion”) [14]; and recently, Giallorenzo et al. studied a correspondence between
choreographic programming and multitier languages [29]. Other work on chore-
ographic programming includes results on case studies [15], procedural abstrac-
tions [18], asynchronous communication [17], polyadic communication [20,31],
implementability [28], and formalisation/mechanisation in Coq [21,22]. Further-
more, theoretical developments are supported in practice by several tools, in-
cluding Chor [10], AIOCJ [48,47], and Choral [29].

However, all publications cited above have two limitations:

1. Regarding the construction of distributed systems, existing work on chore-
ographic programming supports only centralised decision making: every if/
while-statement in a global program has a one-party condition, evaluated
at a single role. For instance, in the example above, the decision to con-
tinue or end the execution is made by Server alone; Client is duly informed
afterwards—with a label communication—as it needs to know how to pro-
ceed, but the decision is really Server’s.
However, in many distributed systems, it is impractical (i.e., unnecessary or
unnatural), or even impossible, for a single role to make decisions.
For instance, consider a distributed system in which two processes enact
roles Player1 and Player2 to simulate a game of chess. The idea is that,
at the end of every turn, a move is communicated from “active” Playeri to
“passive” Playerj, after which a decision must be made: should Playerj take
a next turn, or is the game over? The key point here is that every role has
enough knowledge to check if the latest move is, in fact, the final one. So after
every turn, every role can privately—without a label communication—decide
to continue or end the execution; moreover, unanimity is guaranteed. It is,
thus, unnecessary to additionally use a label communication to have one role
explicitly inform the other one about how to proceed. Yet, all publications
cited above force the usage of a label communication in this situation anyway.

2. Regarding the analysis of distributed systems, existing work on choreo-
graphic programming focusses on providing deadlock freedom. In contrast,
providing functional correctness has not received due attention. This is sur-
prising: given the sequential programming style in which global programs are
expressed, it seems worthwhile to study how classical verification techniques
for sequential code can be adapted to choreographic programming.

Beyond choreographic programming, all other choreography-based approaches
that we know of are limited to centralised decision making, including conversa-
tion protocols (e.g., [3,27]), multiparty session types (MPST) (e.g., [35,13,23,24]),
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Table 1: State of the art (e.g., [9,10,12,19,29,42,47]) vs. this paper
state of the art this paper

construction
decisions centralised decentralised
conditions one-party multiparty
syntax if r.e Gthen Gelse if

∧
{r.er}r∈R Gthen Gelse

example
(global

programs)

1. B.x2_A.y1 ;
2. if A.x1==y1
3. A.SUCC_B ;Gthen

4. A.FAIL_B ;Gelse

1. B.x2_A.y1 ; A.x1_B.y2 ;
2. if A.x1==y1 ∧ B.x2==y2
3. Gthen

4. Gelse

analysis deadlock freedom deadlock freedom &
functional correctness

and MPST extensions to support value-based reasoning using assertions [5], de-
pendent types [51,25], and refinement types [52]. Furthermore, we note that (el-
ements of) deductive verification and session types were combined in Actris [32]
and ParTypes [41]. Actris supports reasoning about functional correctness (us-
ing separation logic [44,36]), but only for binary sessions. In contrast, ParTypes
supports multiparty sessions, but it does not consider functional correctness.

1.3 Contributions of This Paper

In this paper, we address the two limitations described in Sect. 1.2.

1. Construction: We present a new theory of choreographic programming
that supports decentralised decision making: every if/while-statement has a
multiparty condition, evaluated at multiple roles.

2. Analysis: The new theory ensures that if the precondition is true in the
initial state of a global program, then after executing the global program,
the postcondition is true in the final state. Similar to deadlock freedom, this
form of functional correctness is conferred from the global program to the
parallel composition of its projections, by operational equivalence.

Table 1 summarises our contributions relative to the state of the art; it also
shows a minimal example to illustrate the essential difference between centralised
decision making and decentralised. With centralised decision making (left global
program), first, only Bob shares x2 with Alice; next, only Alice compares it with
x1 and shares the outcome with Bob. In contrast, with decentralised decision
making (right global program), first, both Alice and Bob share their values; next,
both Alice and Bob compare them, but they do not need to share the outcomes,
as their unanimity is guaranteed.

1.4 Key Challenge: How to Check If Unanimity Is Guaranteed?

So far, we have seen two examples of decentralised decision making (i.e., Player1
and Player2 in Sect. 1.2; Alice and Bob in Sect. 1.3). In both examples, we noted
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that “unanimity is guaranteed”; this is crucially important to provide deadlock
freedom. As a counterexample of what can go wrong in the absence of unanimity,
suppose that Bob’s condition in Tab. 1 were x2==true (i.e., he ignores Alice’s
value). In that case, unanimity is not guaranteed, so Alice and Bob can diverge:
Alice privately decides to enter one branch, while Bob privately decides to enter
the other branch. A deadlock subsequently ensues if, for instance, Alice needs
to await a message from Bob in her branch, while Bob needs to await a message
from Alice in his branch.

Thus, the key challenge to support decentralised decision making in chore-
ographic programming is this: “How to check if unanimity is guaranteed?” The
pivotal insight is that this question can be reduced to a seemingly unrelated one:
“Given a global program and a postcondition, how to compute a precondition?”
It was first answered for sequential code by Dijkstra in the 1970s [26], in terms
of a predicate transformer to compute weakest preconditions. A crucial technical
contribution of this paper is a non-trivial adaptation of Dijkstra’s seminal work,
tailored for choreographic programming, to provide not only functional correct-
ness (i.e., ensure the truth of the postcondition) but also deadlock freedom in
the presence of decentralised decision making (i.e., ensure unanimity).

1.5 Organisation of This Paper

In Sect. 2, to further motivate this paper’s new theory, we present more examples
of real(istic) distributed systems that require decentralised decision making.

The new theory is presented in Sects. 3–7: in Sect. 3, we present some pre-
liminaries; in Sect. 4, we present a base calculus of global programs, without if/
while-statements, but with a main theorem that covers both deadlock freedom
and functional correctness; in Sect. 5 and Sect. 6, to support decentralised de-
cision making, we extend the base calculus with if/while-statements; in Sect. 7,
we present a calculus of local programs and projection. Thus, Sect. 4–6 cover
the upper half of Fig. 1, while only Sect. 7 covers the bottom half.

Appendices appear in the full version of this paper [39]. Detailed definitions,
auxiliary lemmas, main theorems, and proofs appear in a technical report [40].

2 Motivating Examples

To further motivate the usefulness and necessity of this paper’s new theory,
in this section, we present examples of real(istic) distributed systems that re-
quire decentralised decision making; see Appx. A [39] for additional examples.
Throughout the section, we adopt a programmer’s perspective and present only
global programs (i.e., all construction and analysis activities that a programmer
carries out manually in the workflow, happen in the upper half of Fig. 1).

Regarding the usefulness of the new theory, the following example shows that
centralised decision making can be impractical (i.e., unnatural or unnecessary).

Example 1 (Chess simulation). From Sect. 1.2, recall the distributed system in
which two processes enact roles Player1 and Player2 to simulate a game of chess.
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1. P1.b :=board() ; P2.b :=board() ;
2. while P1.!done(b)
3. (P1.CONTINUE_P2 ;G12 ;
4. if P2.!done(b)
5. (P2.CONTINUE_P1 ;G21)
6. (P2.END_P1 ; skip)) ;
7. P1.END_P2

(a) Centralised

1. P1.b :=board() ; P2.b :=board() ;
2. while P1.!done(b) ∧ P2.!done(b)
3. (G12 ;
4. if P1.!done(b) ∧ P2.!done(b)
5. G21

6. skip)

(b) Decentralised

Fig. 2: Global programs for chess simulation (Exmp. 1)

Figure 2 shows two global programs: one that uses centralised decision mak-
ing (at Player1 and Player2, in alternating order), and one that uses the new
theory’s decentralised decision making; both have auxiliary global programs G12

(Player1 is active, Player2 is passive; details omitted) and G21 (vice versa).
In Sect. 1.2, we argued for the usefulness of decentralised decision making in

this example: the label communications in Fig. 2a are actually unnecessary.

Regarding the necessity of the new theory, the following example shows that
centralised decision making can be impossible. In the example, notation G1 ‖G2

prescribes an interleaving; it is used to express that the order in which G1 and G2

are executed does not matter (i.e., it is not intended to be multi-threading; there
is no interaction between G1 and G2). By convention, sequencing binds stronger
than interleaving. For instance, G1 ;G2 ‖G3 should be read as (G1 ;G2) ‖G3.

Example 2 (Probabilistic leader election in anonymous clique networks). Con-
sider a distributed system in which k anonymous processes (i.e., they have no
predefined identifiers) need to elect a leader among them. For clique networks
(i.e., each process has a channel to each other process), a probabilistic version
of Peleg’s algorithm [45] can be used in the style of Itai and Rodeh [37,38]. The
algorithm proceeds in rounds. In every round, every process picks a random iden-
tifier and sends it to every other process. If there is a unique maximal identifier,
then the process that picked it becomes the leader. If not, another round follows.

Figure 3 shows a global program for k=3; it crucially relies on the new the-
ory’s decentralised decision making. We write r.[x1, . . . , xn] :=[e1, . . . , en] to ab-
breviate r.x1 :=e1 ; · · · ; r.xn :=en, while we write p.e_ [q1.x1, . . . , qn.xn] to ab-
breviate p.e_q1.x1 ; · · · ; p.e_qn.xn. First, the processes initialise five variables
(lines 1–3): seed is used to pick random identifiers; id1, id2, and id3 are used to
store and compare identifiers; leader indicates whether or not the process was
elected. Next, the processes enter the loop (lines 4–7), each of whose iterations
represents one round: in every iteration, every process increments its seed, picks
a random identifier, and shares it. When the maximal identifier is unique, the
processes exit the loop. One process marks itself as leader (lines 8–10).

The point of this example is that the probabilistic version of Peleg’s algorithm
for cliques—actually, any leader election algorithm—cannot faithfully be imple-
mented using centralised decision making. The reason is that centralised decision
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1. (P1.[seed, id1, id2, id3, leader] :=[-1, -1, -1, -1, false] ‖
2. P2.[seed, id1, id2, id3, leader] :=[-1, -1, -1, -1, false] ‖
3. P3.[seed, id1, id2, id3, leader] :=[-1, -1, -1, -1, false]) ;
4. while

∧
{r.!maxIsUnique(id1,id2,id3)}r∈{P1,P2,P3}

5. (P1.seed :=seed+1 ; P1.id1 :=random1(seed) ; P1.id1_ [P3.id1,P2.id1] ‖
6. P2.seed :=seed+1 ; P2.id2 :=random2(seed) ; P2.id2_ [P1.id2,P3.id2] ‖
7. P3.seed :=seed+1 ; P3.id3 :=random3(seed) ; P3.id3_ [P2.id3,P1.id3]) ;
8. if

∧
{r.id1 == max(id1,id2,id3)}r∈{P1,P2,P3} (P1.leader :=true) (skip) ;

9. if
∧
{r.id2 == max(id1,id2,id3)}r∈{P1,P2,P3} (P2.leader :=true) (skip) ;

10. if
∧
{r.id3 == max(id1,id2,id3)}r∈{P1,P2,P3} (P3.leader :=true) (skip)

Fig. 3: Global program for probabilistic leader election in anonymous clique net-
works (k=3), using decentralised decision making

making inherently requires the presence of a distinguished process (to evaluate
a one-party condition and share the outcome). However, the motivation to run
a leader election algorithm in the first place is that such a distinguished process
is not yet agreed upon. That is, centralised decision making requires asymmetry
of processes, whereas leader election algorithms require symmetry.

3 Setting the Stage: Data and Conditions

The topic of interest in this paper is “processes that communicate”, rather than
“data that are communicated”. For this reason, we assume that there exists some
underlying calculus of data (Sect. 3.1), but we omit most of its details; they are
orthogonal to this paper’s contributions. On top of it, we adopt a logic to write
preconditions, postconditions, and conditions in if/while-statements (Sect. 3.2).

3.1 Data

Let R = {A,B,C, . . .} denote a universe of roles, ranged over by p, q, r. Let
X = {x, y, z, . . .} denote a universe of variables, ranged over by x, y, z. Let V =
{error, true, false, 0, 1, 2, . . .} denote a universe of values, ranged over by v
(i.e., V contains at least a distinguished value error, booleans, and numbers,
but we also use other data types in examples, including functions). Let E denote a
universe of expressions, ranged over by e; it is induced by the following grammar:

e ::= r.x︸︷︷︸
role-qualified variable

∣∣ v ∣∣ e1==e2 ∣∣ e1<e2 ∣∣ e1&&e2 ∣∣ !e ∣∣ e1+e2 ∣∣ · · ·︸ ︷︷ ︸
compound expressions

Let S = R⇀ (X⇀ V) denote a universe of states (i.e., partial functions from
roles to partial functions from variables to values), ranged over by S; the idea is
that every state has a separate section for every role of interest, to model disjoint
memory spaces. Let eval : S × E → V denote a total evaluation function. For
instance, eval{A 7→{x 7→5,y 7→6}}(A.x+A.y) = 11. We assume that bogus expressions
are evaluated to error. For instance, eval∅(1+true) = error.
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Regarding terminology, we say that every role-qualified variable r.x is “local
to r”. If every role-qualified variable that occurs in e is local to r, then e is “local
to r”. Regarding notation, if e is local to r, then we often move all “r.”-qualifiers
that occur in e to the front. For instance, we write A.x+y instead of A.x+A.y.

3.2 Conditions

We adopt the following basic logic over expressions in E. Let Ψ denote a universe
of formulas, ranged over by φ, χ, ψ; it is induced by the following grammar:

φ, χ, ψ ::= e
∣∣ ¬ψ ∣∣ ψ1 ∧ ψ2

∣∣ ∀ψ
Informally, given state S, formulas have the following meaning relative to S:

– Formula e is an atom: it is true in S iff e evaluates to true using S.
– Formulas ¬ψ and ψ1 ∧ ψ2 are a negation and a conjunction, as usual.

(Negation and conjunction appear also at the level of formulas, and not just
at the level of expressions, for technical convenience later on in this paper.)

– Formula ∀ψ is a tautology: it is true in S iff ψ is true in every state.

Formally, an interpretation function maps formulas to the sets of states in which
they are true, denoted by J-K; it is induced by the following equations:

JeK =
{S | evalS(e) = true}

J¬ψK = S \ JψK
Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K

J∀ψK =

{
S if: JψK = S
∅ otherwise

Regarding terminology, if every expression that occurs in ψ is local to r, then
ψ is “local to r”; if so, the truth of ψ can be checked at r. Regarding notation, we
often write

∧
{ψr}r∈{r1,...,rn} instead of ψr1 ∧· · ·∧ψrn if ψr is local to r for every

r ∈ {r1, . . . , rn}. Furthermore, we write ψ1 ∨ ψ2 and ψ1 → ψ2 for disjunction
and implication. Finally, we write ψ1 ≡ ψ2 instead of Jψ1K = Jψ2K.

4 Global Programs: Base Calculus

To gently introduce the main components of the new theory, in this section, we
present a base calculus of global programs, without if/while statements, but with
a main theorem that covers both deadlock freedom and functional correctness.

Initially, we present the syntax and semantics (Sect. 4.1); subsequently, we
present a predicate transformer (Sect. 4.2); finally, we present the main theorem,
which relies on the predicate transformer (Sect. 4.3). In the next sections, we
extend the base calculus to support decentralised decision making.

4.1 Syntax and Semantics

Let Γ and G denote universes of global actions and global programs, ranged over
by γ and G; they are induced by the following grammar:
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γ ::= q.y :=e
∣∣ p.e_q.y G ::= skip

∣∣ γ ∣∣ G1 ;G2

∣∣ G1 ‖G2

Informally, these grammar elements have the following meaning:

– Global action q.y :=e models an assignment of the value of expression e to
variable y at role q. As an extra constraint, e is local to q. Regarding notation,
we often omit “q.”-qualifiers from e. For instance, we write A.z :=x+y instead
of A.z :=A.x+A.y. Also, we write evalS(q.y :=e) instead of q.y :=evalS(e).

– Global action p.e_q.y models a synchronous communication of the value
of expression e at role p into variable y at role q. As extra constraints, e is
local to p, and p 6= q. Regarding notation, we often omit “p.”-qualifiers from
e. Also, we write evalS(p.e_q.y) instead of p.evalS(e)_q.y.

– Global program skip prescribes an empty execution.

– Global programG1 ;G2 prescribes a weak sequence of G1 and G2. The idea
is that it resembles a conventional strong sequence (i.e., in-order execution),
except that it also allows global actions in G2 that are independent of those
in G1 to be executed already before G1 is done (i.e., out-of-order).
For instance, in A.x :=5 ; B.y :=6, the assignment at Bob is independent of
the assignment at Alice, so they may be executed out-of-order. In contrast,
in A.x :=5 ; A.x+1_B.y, the communication from Alice to Bob depends on
the assignment at Alice, so they must be executed in-order. In general, when
two global actions have disjoint subjects (i.e., participating roles), they are
considered independent and may be executed out-of-order.
Out-of-order execution of global actions with disjoint subjects is common in
choreographic programming: it was first introduced by Carbone and Montesi
to deal with latent concurrency among roles in global action sequences [10].

– Global program G1 ‖G2 prescribes an interleaving of G1 and G2.

Formally, we define the operational semantics of global programs at two “layers”.
(1) The “top layer” consists of an abstract termination relation, denoted

by ↓, and an abstract labelled reduction relation, denoted by → in the style of
process algebra (e.g., [2]). More precisely, G ↓ means that G can terminate, while
G

ψ,γ−−→ G′ means that G can reduce to G′ when ψ is true (i.e., conditionally) by
executing γ. For instance, the following abstract execution is possible:

A.x :=5 ; A.x+1_B.y
true,A.x:=5−−−−−−−→ skip ; A.x+1_B.y

true,A.x+1_B.y−−−−−−−−−−→ skip ; skip ↓

First, the global program reduces by executing an assignment; next, it reduces
by executing a communication; next, it terminates. For simplicity, skips are not
automatically cleaned up by the reduction rules (but they could be).

Relations ↓ and→ are induced by the rules in Fig. 4a. Most rules are standard
[2]. Notably, in this section, every reduction is unconditional (i.e., labelled with
true) due to rule [→-Act]. The only special rule is rule [→-Seq2]: it states that
if G2 can reduce to G′

2 by executing γ (right premise), and if γ is independent
of G1 (left premise), then G1 ;G2 can reduce accordingly (conclusion). We note
that independence is defined in terms of disjointness of subjects, as explained
above. For instance, the following abstract out-of-order execution is possible:
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skip ↓
[↓-Skip]

G1 ↓ G2 ↓
G1 ;G2 ↓

[↓-Seq]
G1 ↓ G2 ↓
G1 ‖G2 ↓

[↓-Par]
ψ = true

γ
ψ,γ−−→ skip

[→-Act]

G1
ψ,γ−−→ G′1

G1 ;G2
ψ,γ−−→ G′1 ;G2

[→-Seq1]
subj(G1) ∩ subj(γ) = ∅ G2

ψ,γ−−→ G′2

G1 ;G2
ψ,γ−−→ G1 ;G

′
2

[→-Seq2]

G1
ψ,γ−−→ G′1

G1 ‖G2
ψ,γ−−→ G′1 ‖G2

[→-Par1]
G2

ψ,γ−−→ G′2

G1 ‖G2
ψ,γ−−→ G1 ‖G′2

[→-Par2]

(a) Base calculus

ψ =
∧
{er}r∈R γ = 1R

if
∧
{er}r∈R G1 G2

ψ,γ−−→ G1

[→-If1]
ψ =

∧
{¬er}r∈R γ = 2R

if
∧
{er}r∈R G1 G2

ψ,γ−−→ G2

[→-If2]

ψ =
∧
{er}r∈R γ = 1R

while
∧
{er}r∈R {ψinv}G

ψ,γ−−→ G ;while
∧
{er}r∈R {ψinv}G

[→-While1]

ψ =
∧
{¬er}r∈R γ = 2R

while
∧
{er}r∈R {ψinv}G

ψ,γ−−→ skip
[→-While2]

(b) Extension with if/while-statements – explained in Sect. 5

R = R1 ∪R2 R1 6= ∅ implies G1 ↓ R2 6= ∅ implies G2 ↓
if

∧
{er}r∈R G1|R1 G2|R2 ↓

[↓-NIf]

r ∈ R \ (R1 ∪R2) ψ = er γ = 1{r}

if
∧
{er}r∈R G1|R1 G2|R2

ψ,γ−−→ if
∧
{er}r∈R G1|R1∪{r} G2|R2

[→-NIf1]

r ∈ R \ (R1 ∪R2) ψ = ¬er γ = 2{r}

if
∧
{er}r∈R G1|R1 G2|R2

ψ,γ−−→ if
∧
{er}r∈R G1|R1 G2|R2∪{r}

[→-NIf2]

G1
ψ,γ−−→ G′1 subj(γ) ⊆ R1 \R2

if
∧
{er}r∈R G1|R1 G2|R2

ψ,γ−−→ if
∧
{er}r∈R G′1|R1 G2|R2

[→-NIf3]

G2
ψ,γ−−→ G′2 subj(γ) ⊆ R2 \R1

if
∧
{er}r∈R G1|R1 G2|R2

ψ,γ−−→ if
∧
{er}r∈R G1|R1 G

′
2|R2

[→-NIf4]

if
∧
{er}r∈R (G ;while

∧
{er}r∈R {ψinv}G|∅)|∅ skip|∅

ψ,γ−−→ G′

while
∧
{er}r∈R {ψinv}G|∅

ψ,γ−−→ G′
[→-NWhile]

(c) Extension with non-blocking if/while-statements – explained in Sect. 6

Fig. 4: Abstract operational semantics of global programs (“top layer”)
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G ↓
(G,S) ↓

[↓]
G

ψ,γ−−→ G′ S ∈ JψK γc = evalS(γ)

(G,S) γc

−→ (G′, effect(γc,S))
[→]

effect(q.y :=v,S) = S[v/q.y]
effect(p.v_q.y,S) = S[v/q.y]

S[v/q.y] = {r 7→ S(r) | q 6= r} ∪ {q 7→ {x 7→ S(q)(x) | x 6= y} ∪ {y 7→ v}}

Fig. 5: Concrete operational semantics of global programs (“bottom layer”)

A.x :=5 ; B.y :=6
true,B.y:=6−−−−−−−→ A.x :=5 ; skip

true,A.x:=5−−−−−−−→ skip ; skip ↓

(2) The “bottom layer” consists of a concrete termination predicate, denoted
by ↓ (same symbol as before), and a concrete labelled reduction relation, denoted
by → (ditto). The idea is that the bottom layer enriches the top layer by taking
into account states, in terms of configurations of the form (G,S). More precisely,
(G,S) ↓ means that G can terminate in S, while (G,S) γc

−→ (G′,S ′) means that
G can reduce to G′ by executing γc in S to obtain S ′. We write γc—with a
superscript “c”—to indicate that it is a “concrete” global action in which every
expression has been evaluated to a value (using S). For instance, the following
concrete execution is possible:

(A.x :=5 ; A.x+1_B.y, {A 7→ {x 7→ 0},B 7→ {y 7→ 0}})
A.x:=5−−−−→ (skip ; A.x+1_B.y, {A 7→ {x 7→ 5},B 7→ {y 7→ 0}})

A.6_B.y−−−−−→ (skip ; skip, {A 7→ {x 7→ 5},B 7→ {y 7→ 6}}) ↓

Relations ↓ and→ are induced by the rules in Fig. 5. Rule [↓] states that if G
can terminate, then so can (G,S), regardless of S. More interestingly, rule [→]
states that if G can reduce to G′ when ψ is true by executing γ (left premise),
and if ψ is indeed true in S (middle premise), and if γc is the “concretisation” of γ
such that every expression is first evaluated using S (right premise), then (G,S)
can reduce accordingly, and the effect of γc is applied to S (conclusion); the latter
means that a variable is bound to a new value in S, formalised using “substitution
notation”. For instance (cf. second reduction in the concrete execution above),
if S = {A 7→ {x 7→ 5},B 7→ {y 7→ 0}}, then effect(evalS(A.x+1_B.y),S) =
effect(A.6_B.y,S) = {A 7→ {x 7→ 5},B 7→ {y 7→ 6}}.

Our formalisation of the operational semantics has two novelties:

– Two-layered approach – In existing work on stateful choreographic program-
ming (e.g., [14,19]), abstract and concrete operational semantics are merged
into one. An advantage of keeping them separate is that it enables us to
prove the main theorems also in a layered fashion; this simplifies our proofs.

– Semantic reordering – In existing work on choreographic programming (e.g.,
[10,42]), weak sequencing is formalised using a structural congruence rela-
tion in the style of pi-calculus (e.g., [50]), including special “swap rules” to
syntactically reorder independent global actions. In contrast, rule [→-Seq2]
semantically reorders them; this simplifies our proofs. Our approach, inspired
by Rensink and Wehrheim [49], essentially generalises the formalisation of
asynchronous action prefixing in multiparty session types [24].
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R 6= ∅
XR(skip)

[X-Skip]
q ∈ R

XR(q.y :=e)
[X-Act1]

p, q ∈ R
XR(p.e_q.y)

[X-Act2]

XR(G1) XR(G2)

XR(G1 ;G2)
[X-Seq]

XR(G1) XR(G2) chan(G1) ∩ chan(G2) = ∅
XR(G1 ‖G2)

[X-Par]

(a) Base calculus

XR(G1) XR(G2)

XR(if
∧
{er}r∈R G1 G2)

[X-If]
XR(G)

XR(while
∧
{er}r∈R {ψinv}G)

[X-While]

(b) Extension with if/while-statements – explained in Sect. 5

XR(G1) XR(G2) R1, R2 ⊆ R
R1 6= ∅ implies R2 = ∅
R2 6= ∅ implies R1 = ∅

XR(if
∧
{er}r∈R G1|R1 G2|R2)

[X-NIf]
XR(G)

XR(while
∧
{er}r∈R {ψinv}G|∅)

[X-NWhile]

(c) Extension with non-blocking if/while-statements – explained in Sect. 6

Fig. 6: Well-formedness of global programs

We end this subsection with a well-formedness relation, denoted by X, to
check a few basic syntactic properties of global programs; it is induced by the
rules in Fig. 6a. For now, there are two aims (to be extended in subsequent
sections for if/while-statements):

1. Rules [X-Act1] and [X-Act2] ensure that R contains all roles that occur
in G. The idea is that when we project G onto every role in R (Sect. 7),
we get a local program for every remaining subject of G (i.e., when G is the
remaining global program, R may contain roles that participated in the past,
but no longer in the future). Thus, R spans the whole distributed system.

2. Rule [X-Par] ensures that the channels (i.e., sender–receiver pairs) that oc-
cur in G1 and G2 are disjoint; this is a common assumption in choreographic
programming (e.g., [8]). The idea is that when a communication happens in
G1 ‖G2, it must be unambiguously clear whether it happened in G1 or in G2;
otherwise, the operational equivalence theorem cannot be proved (Sect. 7).

4.2 Predicate Transformer

In the next subsection, the main theorem for global programs will be as follows
(informally): if the global program is well-formed, and if the precondition is
true in the initial state, then deadlock freedom and functional correctness are
provided. In this subsection, we present a technique to automatically compute
preconditions such that the main theorem can indeed be formulated and proved.
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φ(skip, χ) = χ

φ(q.y :=e, χ) = χ[e/q.y]

φ(p.e_q.y, χ) = χ[e/q.y]

φ(G1 ;G2, χ) = φ(G1,φ(G2, χ))

φ(G1 ‖G2, χ) =


φ(G1,φ(G2, χ))

if: G1 # G2

false

otherwise

(a) Base calculus

φ(if
∧
{er}r∈R G1 G2, χ) =

(
∧
{ er}r∈R → φ(G1, χ)) ∧

(
∧
{¬er}r∈R → φ(G2, χ)) ∧

(
∧
{er1 → er2}r1,r2∈R)

φ(while
∧
{er}r∈R {ψinv}G,χ) =

ψinv ∧ ∀(ψinv → (

(
∧
{ er}r∈R → φ(G,ψinv)) ∧

(
∧
{¬er}r∈R → χ) ∧

(
∧
{er1 → er2}r1,r2∈R)))

(b) Extension with if/while-statements
– explained in Sect. 5

φ(if
∧
{er}r∈R G1|R1 G2|R2 , χ) =


φ(if

∧
{er}r∈R G1 G2, χ) if: R1 = ∅ = R2

φ(G2, χ) ∧
∧
{¬er}r∈R\R2 if: R1 = ∅ 6= R2

φ(G1, χ) ∧
∧
{ er}r∈R\R1 if: R1 6= ∅ = R2

false if: R1 6= ∅ 6= R2

φ(while
∧
{er}r∈R {ψinv}G|∅, χ) = φ(while

∧
{er}r∈R {ψinv}G,χ)

(c) Extension with non-blocking if/while-statements – explained in Sect. 6

Fig. 7: Predicate transformer to compute preconditions

Let φ denote a predicate transformer function; it is defined by the equations
in Fig. 7a, where χ[e/q.y] denotes substitution of e for q.y in χ. In words, φ
consumes a global program G and a postcondition χ as input, and it produces a
precondition φ(G,χ) as output. The idea is that φ is sound : if φ(G,χ) is true in
the initial state, then after executing G, χ is true in the final state. Essentially,
Fig. 7a is an adaptation of Dijkstra’s predicate transformer to compute weakest
preconditions for sequential code [26], denoted by wp. More precisely:

– For q.y :=e, the definitions of φ and wp are the same; for p.e_q.y (absent
in Dijkstra’s work), φ works similarly. Figure 8a shows an example: if A.x is
5 (computed precondition), then after the communication of A.x+1 at Alice
into B.y at Bob (global program), the sum of A.x and B.y is 11 (postcon-
dition). We note that the postcondition relates variables at different roles;
this is straightforwardly supported by φ, without extra manual effort.

– For G1 ;G2, the definitions of φ and wp are the same as well: first, χ is used
as a postcondition of G2 to compute a precondition φ(G2, χ); next, φ(G2, χ)
is used as a postcondition of G1 to compute a precondition φ(G1,φ(G2, χ)).
Such a “backwards” computation of a precondition corresponds to the “for-
wards” execution of the sequence: initially, φ(G1,φ(G2, χ)) is true; subse-
quently, φ(G2, χ) is true after executing G1; finally, χ is true after executing
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φ(A.x+1_B.y,A.x+B.y==11)

= A.x+A.x+1==11

≡ A.x+A.x==10 ≡ A.x==5

(a) Communication

φ(γ ; A.x+1_B.y,A.x+B.y==11)

= φ(γ,φ(A.x+1_B.y,A.x+B.y==11))

= φ(γ,A.x+A.x+1==11) = 5+5+1==11 ≡ true

(b) Sequence

φ(γ ; if (A.x==5 ∧ B.y==6) B.y :=7 skip, χ)

= φ(γ,φ(if (A.x==5 ∧ B.y==6) B.y :=7 skip, χ))

= φ(γ, (A.x==5 ∧ B.y==6→ φ1) ∧ (¬A.x==5 ∧ ¬B.y==6→ φ2) ∧ (A.x==5↔ B.y==6))

= (5==5 ∧ B.y==6→ φ1[5/A.x]) ∧ (¬5==5 ∧ ¬B.y==6→ φ2[5/A.x]) ∧ (5==5↔ B.y==6)

≡ (B.y==6→ φ1[5/A.x]) ∧ (false→ φ2[5/A.x]) ∧ B.y==6 ≡ φ1[5/A.x] ∧ B.y==6

(c) Conditional choice – explained in Sect. 5. Let φ1 = φ(B.y :=7, χ), φ2 = φ(skip, χ).

Fig. 8: Examples of φ. Let γ = A.x :=5.

G2. Figure 8b shows an example: if true is true (i.e., unconditionally), after
executing the global program, the sum of A.x and B.y is 11.
However, unlike Dijkstra’s setting (i.e., strong sequencing), there is a caveat
in our setting (i.e., weak): G1 and G2 may be executed out-of-order. This
makes proving the soundness of φ more challenging than in Dijkstra’s work
(notably: establishing the correspondence between backwards computation
of a precondition and forwards execution of the sequence).

– For G1 ‖G2 (absent in Dijkstra’s work), the definition of φ is inspired by
the notion of disjoint parallelism in Hoare logic [33,1]. There are two cases.
If G1 and G2 are non-interfering, which means that the variables that occur
in G1 and G2 are disjoint, denoted as G1 # G2, then the order in which G1

and G2 are executed does not affect the truth/falsehood of the postcondition;
in that case, a precondition is computed by assuming, arbitrarily, in-order
execution of G1 and G2 (but any other interleaving would work as well).
If G1 and G2 are interfering, then φ yields false, so no state satisfies the pre-
condition. This is sound but not complete (i.e., there exist deadlock-free and
functionally-correct global programs for which the computed precondition
is nevertheless false). For our present purposes, however, φ is “complete
enough” (e.g., all examples in Sect. 2 and Appx. A [39] are supported).4

The following proposition follows almost directly from the definitions. It states
that if φ(γ, χ) is true in S, then χ is true in S ′, after executing γ.

Proposition 1. If S ∈ Jφ(γ, χ)K and S ′ = effect(evalS(γ),S), then S ′ ∈ JχK.
4 Even though φ requires non-interference, interleaving (‖) offers additional expressive
power beyond weak sequencing (;). This is because non-interference (for ‖) is defined
in terms of disjointness of variables, whereas independence (for ;) is defined in terms
of disjointness of roles. For instance, A.x :=5 and A.y :=6 are non-interfering, but
not independent. Consequently, A.x :=5 ‖ A.y :=6 allows the assignments to happen
in any order, whereas A.x :=5 ; A.y :=6 requires them to happen from left to right.
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4.3 Deadlock Freedom and Functional Correctness

The aim of this subsection is to formulate and prove the main theorem for global
programs, which covers both deadlock freedom and functional correctness.

To give a uniform presentation across Sects. 4–6, we formulate the lemmas
and theorem for the base calculus in this section in a way that they are reusable—
verbatim—for the extensions in the next sections. As a result, some formulations
are more restrictive than necessary for the base calculus, but this is fine.

The first two lemmas pertain to φ’s soundness. The first lemma states that if
G is well-formed and can terminate, then the truth of φ(G,χ) implies the truth
of χ (i.e., the postcondition has been brought about). The second lemma states
that if G is well-formed and can reduce to G′ when ψ is true by executing γ,
then the truth of φ(G,χ) ∧ ψ implies the truth of χ, after executing γ ;G′ (i.e.,
the postcondition is being brought about by executing γ).

Lemma 1. If XR(G) and G ↓, then Jφ(G,χ)K ⊆ JχK.

Proof. By induction on the derivation of G ↓.

Lemma 2. If XR(G) and G
ψ,γ−−→ G′, then Jφ(G,χ) ∧ ψK ⊆ Jφ(γ ;G′, χ)K.

Proof. By induction on the derivation of G ψ,γ−−→ G′. The interesting case is rule
[→-Seq2], with G = G1 ;G2. We need to prove the following inclusions:

Jφ(G1,φ(G2, χ)) ∧ ψK ⊆ Jφ(G1 ; γ ;G′
2, χ)K ⊆ Jφ(γ ;G1 ;G

′
2, χ)K

The first inclusion can be proved using the induction hypothesis and G2
ψ,γ−−→ G′

2

(right premise of rule [→-Seq2]). The second inclusion can be proved using
subj(G1) ∩ subj(γ) = ∅ (left premise) and XR(G), to establish that the variables
that occur inG1 and γ are disjoint as well (i.e.,G1 and γ are non-interfering).

The next lemma states that well-formedness is preserved by reduction.

Lemma 3. If XR(G) and Jφ(G,χ)K 6= ∅ and G ψ,γ−−→ G′, then XR(G′).

Proof. By induction on the derivation of G ψ,γ−−→ G′.

The next lemma states that if G is well-formed, and if φ(G,χ) is true in S,
then either G can terminate, or G can reduce to G′ (i.e., G is not stuck).

Lemma 4. If XR(G) and S ∈ Jφ(G,χ)K, then either G ↓, or there exist ψ, γ,G′

such that G ψ,γ−−→ G′ and S ∈ JψK.

Proof. By induction on the derivation of XR(G).

Now, our main theorem for global programs states that if G is well-formed,
and if φ(G,χ) is true in S, and if (G,S) has a sequence of reductions to (G†,S†),
then either (G†,S†) can terminate and χ is true in S†, or (G†,S†) can reduce.
Thus, an execution of (G,S) consists of either finitely many reductions, followed
by termination, or infinitely many (i.e., deadlock freedom); in the former case,
upon termination, the postcondition is true (i.e., functional correctness).
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Theorem 3. If XR(G) and S ∈ Jφ(G,χ)K and (G,S) γc
1−→ · · · γ

c
n−→ (G†,S†), then:

1. Either (G†,S†) ↓, or there exist γc, G‡,S‡ such that (G†,S†) γc

−→ (G‡,S‡).
2. If (G†,S†) ↓, then S† ∈ JχK.

Proof. First, we inductively apply Prop. 1 and Lems. 2–3, along the reduction
sequence to prove XR(G†) and S† ∈ Jφ(G†, χ)K. Next, we apply Lem. 4 to prove
deadlock freedom and Lem. 1 to prove functional correctness, using Fig. 5.

5 Global Programs: If/While-Statements

In the previous section, to gently introduce the main components of our theory,
we presented a base calculus of global programs. In this section, we extend it
with if/while-statement to support decentralised decision making.

5.1 Syntax and Semantics

Recall that Γ and G denote universes of global actions and global programs,
ranged over by γ and G; they are induced by the following extended grammar:

γ ::= · · · (page 8)
∣∣ iR

G ::= · · · (page 8)
∣∣ if

∧
{er}r∈R G1 G2

∣∣ while
∧
{er}r∈R {ψinv}G

Informally, the new grammar elements have the following meaning:

– Global action iR, with i ∈ {1, 2}, models a collection of private decisions
at all roles in R together (i.e., at the same time). In case of an if-statement,
i=1 and i=2 indicate entering the then-branch and else-branch; in case of a
while-statement, i=1 and i=2 indicate (re)entering the loop and exiting it.

– Global program if
∧
{er}r∈R G1 G2 prescribes a conditional choice of G1

and G2. The idea is that every role r ∈ R privately evaluates its own conjunct
er of multiparty condition

∧
{er}r∈R and, based on the outcome, privately

decides to enter G1 or G2. As a result, we have three cases to consider:

• Case A: If er is true for every r ∈ R, then everyone enters G1.
• Case B: If er is false for every r ∈ R, then everyone enters G2.
• Case C: If er1 is true, but er2 is false, for some r1, r2 ∈ R, then someone

enters G1, but someone else enters G2.

Cases A and B are the “good” situations in which the roles are unanimous.
In contrast, case C is the “bad” situation that leads to deadlock.
For simplicity, in this section, we assume that roles make private decisions
together (i.e., at the same time), using two synchronisation barriers. Intu-
itively, in operational terms, this means that for every role r: first, it privately
evaluates its own conjunct er; next, it reaches one of two barriers, depending
on the truth/falsehood of er; next, it waits until every other role has pri-
vately evaluated a conjunct and reached a barrier as well. In cases A and B,
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all roles eventually reach the same barrier, so it breaks, and all roles enter
one branch together; in case C, the roles never reach the same barrier—they
are divided—so neither one of them breaks, and the roles get stuck.
(We note that barriers are often undesirable in distributed systems. In the
next section, therefore, we also extend the base calculus with barrier-free
if/while-statements. However, as the technical details of the barrier-free ver-
sions are considerably more complicated than the barrier-based versions, but
partly rely on similar principles, we present the barrier-based ones first.)
An if-statement cannot terminate: a decision must be made.

– Global program while
∧
{er}r∈R {ψinv}G prescribes a conditional loop

of G. The idea is similar to if
∧
{er}r∈R G1 G2, including non-termination.

Condition ψinv is the loop invariant ; it does not affect the operational se-
mantics of while-statements, but it is used to compute preconditions.

Formally, for if/while-statements,→ is induced by the rules in Fig. 4b (page 10).
The presence of rules [→-If1] and [→-If2] corresponds to cases A and B, whereas
the absence of other rules corresponds to case C (i.e., there are no reductions
when roles are not unanimous). For instance, when G = A.x :=5 ; if (A.x==5 ∧
B.y==6) B.y :=7 skip, the following two abstract executions are possible:

G
true,

A.x:=5−−−−→ •
A.x==5∧B.y==6,

1{A,B}
−−−−−−−−−→ •

true,
B.y:=7−−−−→ •↓ G

true,
A.x:=5−−−−→ •

¬A.x==5∧¬B.y==6,
2{A,B}

−−−−−−−−−−−→ •↓
First, G reduces by executing an assignment at Alice (both executions); next,
it reduces by executing private decisions at Alice and Bob together to enter the
then-branch (left execution) or else-branch (right); next, in the former case, it
reduces by executing an assignment at Bob and terminates, whereas in the latter
case, it terminates. Regarding concrete executions, two situations are possible:

– If B.y is initially 6, then the left abstract execution can induce a deadlock-
free concrete one: after the first concrete reduction, A.x is 5, and B.y is still
6, so A.x==5 ∧ B.y==6 is true (i.e., case A, unanimity), enabling the sequel.

– If B.y is initially not 6, then both abstract executions cannot induce a
deadlock-free concrete one: after the first concrete reduction, A.x is 5, but
B.y is still not 6, so both A.x==5 ∧ B.y==6 and ¬A.x==5 ∧ ¬B.y==6 are false
(i.e., case C, non-unanimity), disabling the sequel and causing a deadlock.

This example shows that we need a technique to infer that B.y must initially be
6 to ensure unanimity for deadlock freedom; we present it in the next subsection.

We end this subsection with an extension of X for if/while-statements; it is
induced by the rules in Fig. 6b (page 12). There is a third aim now (cf. page 12):

3. Rules [X-If] and [X-While] ensure that every role (in R) has its own con-
junct in every multiparty condition. The idea is that every role always needs
to know which branch to enter, so it must participate in every decision.5,6

5 Well-formedness (every role has its own conjunct) and the grammar of if/while-state-
ments (every conjunct is local to a role) are jointly similar to the variable-knowledge-
condition of Neykova et al. [43]; they ensure that formulas are projectable (Fig. 10b).

6 It is possible to encode choices in which only a few—not all—roles participate using
extra variables; the idea is outlined at the end of Appx. A [39]. However, this encoding
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5.2 Predicate Transformer

We proceed with an extension of φ for if/while-statements; it is defined by
the equations in Fig. 7b (page 13). As before, the definition of φ for if/while-
statements is an adaptation of the definition of wp (i.e., Dijkstra’s original pred-
icate transformer [26]), but it differs on crucial points as well. More precisely:

– For if
∧
{er}r∈R G1 G2, the definition of φ has three conjuncts. The first

(resp. second) conjunct states that if every er is true (resp. false), then the
precondition of the then-branch (resp. else-branch) is true. This is similar to
the definition of wp, and it includes case A (resp. B) on page 16.
The third conjunct states that every er1 must imply every er2 (i.e., they are
either all true or all false); this is new relative to the definition of wp, and it
excludes case C on page 16. (i.e., if the precondition computed by φ is true,
then case C will never arise). The following proposition makes this precise.

Proposition 2. J
∧
{er1 → er2}r1,r2∈RK ⊆ J

∧
{er}r∈R ∨

∧
{¬er}r∈RK.

Thus, φ accumulates logical requirements not only to ensure the truth of the
postcondition for functional correctness (i.e., the first and second conjunct),
but also to ensure unanimity for deadlock freedom (i.e., the third conjunct).
Figure 8c (page 14) shows an example, featuring the same global program
as G on page 17: if φ1[5/A.x] is true (to ensure the truth of χ) and B.y is
6 (to ensure unanimity), then after executing the global program, χ is true.
Thus, φ mechanises our reasoning about G on page 17.

– For while
∧
{er}r∈R {ψinv}G, the definition of φ has an “outer conjunction”

and an “inner conjunction”. The inner conjunction is similar to φ for if-state-
ments: either every er and the precondition of the body are true, to (re-)enter
the loop, or every ¬er and the postcondition are true, to exit it.
The second outer conjunct states that always (i.e., in every state, i.e., before
and after executing the body), if the invariant is true, then the inner con-
junction is true; the first outer conjunct states that the invariant is indeed
true (i.e., before executing the body). This is similar to the definition of wp.

5.3 Deadlock Freedom and Functional Correctness

To extend the main theorem for global programs (Thm. 3, page 16) to cover
if/while-statements, we need to extend the auxiliary lemmas (Lem. 1–4, page 15
onwards); the proof of the theorem relies on the lemmas and is the same.

Lemma 5. Lemmas 1–4 hold for this section’s extension.

Proof. For Lem. 1 there are no new cases (i.e., no new termination rules in
Fig. 4b). For Lems. 2–3, the new cases (i.e., new reduction rules in Fig. 4b) can
be proved directly. For Lem. 4, the new cases (i.e., new well-formedness rules
in Fig. 6b) can be proved using Prop. 2, to establish that rule [→-If1] or rule
[→-If2] is applicable in such a way that S ∈ JψK holds as well.

is not always practical/user-friendly. We therefore aim to offer “native” support for
such choices too, using a form of merging [8,9,10]; see also Appx. D [39].
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Theorem 4. Theorem 3 holds for this section’s extension.

Proof. The same as the proof of Thm. 3, using Lem. 5 instead of Lems. 1–4.

6 Global Programs: Non-Blocking If/While-Statements

In the previous section, we extended the base calculus of global programs with
blocking if/while-statements; they require roles to make private decisions together
(i.e., at the same time), using barriers. In this section, we extend the base calcu-
lus also with non-blocking if/while-statements; they allow roles to make private
decisions alone (i.e., at their own pace). This is often preferable.

6.1 Syntax and Semantics

Recall that G denotes a universe of global programs, ranged over by G; it is
induced by the following extended grammar:

G ::= · · · (page 16)
∣∣ if

∧
{er}r∈R G1|R1

G2|R2

∣∣ while
∧
{er}r∈R {ψinv}G|∅

Informally, the new grammar elements have the following meaning:7

– Global program if
∧
{er}r∈R G1|R1

G2|R2
prescribes a non-blocking con-

ditional choice of G1 and G2. It relies on similar principles as the blocking
version; notably, the same cases A, B, C on page 16 are applicable.
The key difference with the blocking version is that roles make private deci-
sions alone (i.e., at their own pace), without using synchronisation barriers.
Intuitively, in operational terms, this means that for every role r: first, it pri-
vately evaluates its own conjunct er; next, it immediately enters a branch.
To accommodate this, extra syntactic bookkeeping—in the form of the “|R1

”
and “ |R2

” notation—is needed to keep track of roles’ decisions.
More precisely, at any time, Ri contains every role that has already made a
private decision to enter Gi. Initially, both R1 and R2 are empty. In case A
(resp. B), R1 (resp. R2) eventually becomes “full” and contains all roles, while
R2 (resp. R1) always remains empty. In case C, both R1 and R2 eventually
become non-empty, but they always remain “non-full” as well.
A non-blocking if-statement can terminate when all roles have made a private
decision and every entered branch can terminate.

– Global program while
∧
{er}r∈R {ψinv}G|∅ prescribes a non-blocking

conditional loop of G. The idea is similar to if
∧
{er}r∈R G1|R1

G2|R2
,

except that no extra bookkeeping is needed (i.e., a fixed ∅ in “ |∅”): non-
blocking while-statements will be unfolded into non-blocking if-statements.
(The reason for the seemingly redundant “ |∅” notation is to give non-blocking
while-statements a different grammatical form than blocking ones.)

7 Blocking and non-blocking if/while-statements have different syntax. This makes it
possible to mix the blocking and non-blocking versions in the same global program
(we have not encountered a compelling use case for this yet, though).
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Formally, for non-blocking if/while-statements, ↓ and→ are induced by the rules
in Fig. 4c (page 10). Rule [↓-NIf] states that if every role has made a private
decision (left premise), and if G1 and G2 can terminate when at least one role
has entered it (middle and right premise), then the non-blocking if-statement can
terminate. The effect of the “Ri 6= ∅” conditions is that a non-entered branch
does not need to be able to terminate for the whole if-statement to be able to
terminate. We note that rule [↓-NIf] also covers the case in which both R1 and
R2 are non-empty, which should never have happened in the first place; shortly,
we will rule it out using well-formedness and the predicate transformer.

Rules [→-NIf1] and [→-NIf2] state that if r has not made a private decision
yet (left premise), then the non-blocking if-statement can reduce by executing
one. For instance, when G = A.x :=5 ; if (A.x==5∧B.y==6) B.y :=7|∅ skip|∅ and
ψ = A.x==5 ∧ B.y==6, the following two abstract executions are possible:

G
true,

A.x:=5−−−−→ •
A.x==5,
1{A}
−−−−→ •

B.y==6,
1{B}
−−−−→ •

true,
B.y:=7−−−−→ skip ; if ψ skip|{A,B} skip|∅ ↓

G
true,

A.x:=5−−−−→ •
A.x==5,
1{A}
−−−−→ •

¬B.y==6,
2{B}
−−−−−→ skip ; if ψ B.y :=7|{A} skip|{B}

First, G reduces twice by executing an assignment and a private decision at Alice
alone to enter the then-branch (both executions); next, it reduces by executing
a private decision at Bob alone to enter the then-branch (top execution) or
else-branch (bottom); next, in the latter case, it is stuck. Regarding concrete
executions, if B.y is initially not 6, then a deadlock-free one does not exist: the
top abstract execution cannot be enriched (i.e., after the second reduction, the
sequel is disabled); the bottom abstract execution can be enriched but gets stuck.
We note that unlike rules [→-If1] and [→-If2], there is no direct correspondence
between rules [→-NIf1] and [→-NIf2] and cases A, B, C on page 16.

Rules [→-NIf3] and [→-NIf4] state that if G1 or G2 can reduce by executing
γ (left premise), and if the subjects of γ have previously entered G1 or G2 (right
premise), then the non-blocking if-statement can reduce accordingly. This means
that global actions in the branches can be executed already before all private
decisions have been made, out-of-order. We note that the set differences in the
premises of these rules are needed, because in general (but undesirably), R1 and
R2 may overlap; shortly, we will rule out this possibility using well-formedness
and the predicate transformer. For instance, with the same G as above, also the
following abstract execution is possible (due to rule [→-Seq2] as well):

G
true,

A.x:=5−−−−→ •
B.y==6,
1{B}
−−−−→ •

true,
B.y:=7−−−−→ •

A.x==5,
1{A}
−−−−→ skip ; if ψ skip|{A,B} skip|∅ ↓

Rule [→-NWhile] unfolds the non-blocking while-statement.
We end this subsection with an extension of X for non-blocking if/while-

statements; it is induced by the rules in Fig. 6c (page 12). There is a fourth aim
now (cf. page 12 and page 17):

4. Rule [X-NIf] ensures that case A or B on page 16 applies, but not case C:
when roles make private decisions alone, they must still be unanimous.
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6.2 Predicate Transformer

For non-blocking if/while-statements, φ is defined by the equations in Fig. 7c
(page 13). It is based on the extension for the blocking variants in Fig. 7b:

– For if
∧
{er}r∈R G1|R1

G2|R2
, the definition of φ has four cases.

If R1 and R2 are both empty, then no role has made a private decision
to enter a branch yet, so the precondition is the same as for blocking if-
statements (i.e., either choice is still possible). This shows that blocking
and non-blocking if-statements are functionally equivalent in the following
sense: to ensure that the same postcondition is true in the end, the same
precondition must be true in the beginning.
If Ri and Rj are empty and non-empty, then the roles in Rj have privately
decided to enter Gj . Thus, the precondition of Gj must be true. Moreover,
to ensure that the remaining roles in R \ Rj will privately make the same
decision to enter Gj , their conjuncts must be all true (if j=1) or all false (if
j=2) as well. In this way, cases A and B on page 16 are included.
If R1 and R2 are both non-empty, then roles have privately decided to enter
both G1 and G2, which should never have happened. Thus, the precondition
is false. In this way, case C on page 16 is excluded.

– For while
∧
{er}r∈R {ψinv}G|∅, no role has made a private decision to

(re)enter the loop or exit it yet, so the precondition is the same as for block-
ing while-statements. When the first role privately decides, the non-blocking
while-statement is unfolded into a non-blocking if-statement.

6.3 Main Theorem: Deadlock Freedom and Functional Correctness

To extend the main theorem for global programs (Thm. 3, page 16) to cover non-
blocking if/while-statements, we need to extend the auxiliary lemmas (Lem. 1–4,
page 15 onwards); the proof of the theorem relies on the lemmas and is the same.

Lemma 6. Lemmas 1–4 hold for this section’s extension.

Proof. For Lem. 1, the new case (i.e., rule [↓-NIf] in Fig. 4c) can be proved
using XR(G), to rule out the degenerate case that a non-blocking if-statement
with the “empty” multiparty condition

∧
{er}r∈∅ can terminate. For Lem. 2, the

new cases (i.e., new reduction rules in Fig. 4c) can be proved directly. For Lem. 3,
the new cases (i.e., new reduction rules in Fig. 4c) can be proved using XR(G)
and Jφ(G,χ)K 6= ∅ (first and second premise of Lem. 3), to establish that R1 or
R2 is empty before the reduction, and remains empty after it (i.e., case C on
page 16 never arises). For Lem. 4, the new cases (i.e., new well-formedness rules
in Fig. 6b) can be proved using Prop. 2, to establish that rule [→-NIf1] or rule
[→-NIf2] is applicable in such a way that S ∈ JψK holds as well.

Theorem 5. Theorem 3 holds for this section’s extension.

Proof. The same as the proof of Thm. 3, using Lem. 6 instead of Lems. 1–4.
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7 Local Programs and Projection

In the previous sections, to cover the upper half of Fig. 1, we incrementally
presented a calculus of global programs with blocking and non-blocking if/while-
statements. In this section, to cover the bottom half, we present a complementary
calculus of local programs and a projection function.

7.1 Syntax and Semantics

Let Λ and L denote universes of local actions and local programs, ranged over
by λ and G; they are induced by the following grammar:

λ ::= q.y :=e
∣∣ pq !e ∣∣ pq?e ∣∣ iRr ∣∣ τ

L ::= skip
∣∣ λ ∣∣ L1 ; L2

∣∣ L1 ‖ L2

∣∣
R.if e L1 L2

∣∣ R.while e L
∣∣ if e|n L1|R1

L2|R2

∣∣ while e|n L|∅

Informally, these grammar elements have the following meaning:

– Local action q.y :=e models an assignment, as before.
– Local actions pq !e and pq?q model a send and a receive of the value of

expression e at role p into variable y at role q.
– Local action iRr , with i ∈ {1, 2}, models a private decision at role r, as

part of a collection of private decisions at all roles in R together.
– Local action τ models a delay (i.e., passage of time in which a role sits idle).

– The local programs have largely the same meaning as their global counter-
parts. There are two differences. First, the extra “R.” notation in blocking
if/while-statements allows a role to know which other roles to wait for be-
fore entering a branch. Second, the extra “ |n” notation in non-blocking if/
while-statements allows a role to delay n times (motivated below).

Formally, the abstract termination and reduction relations for local programs
are induced by the same rules as in Fig. 4 (page 10), mutatis mutandis, except:

– In the rules for if/while-statements: every “
∧
{er}r∈R” and “

∧
{¬er}r∈R” is

replaced with “e” and “¬e”, while every “iR” and “i{r}” is replaced with “iRr ”
and “i{r}r ” such that e is local to r. See Appx. B [39] for details.

– There is an extra rule for non-blocking if-statements to execute a delay and
decrement n if n>0 (motivated below, when discussing projection).

Let R⇀ L denote a universe of families of local programs (i.e., partial func-
tions roles to local programs), ranged over by L. Informally, L prescribes a
parallel composition of the k local programs in its image L(r1), . . . ,L(rk).
Formally, the abstract termination and reduction relations are induced by the
rules in Fig. 9. They state that an assignment and a delay are executed alone,
while a send–receive pair and a collection of private decisions are executed to-
gether. We note that for n=1, the bottom-left rule to execute i{r1,...,rn} covers
the case of non-blocking if/while-statements. Furthermore, the mechanisms by
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L(r1) ↓ · · · L(rn) ↓
L ↓

L(q) ψ,q.y:=e−−−−−→ L′q

L ψ,q.y:=e−−−−−→ L[q 7→ L′q]

L(p)
ψp,pq !e−−−−−→ L′p L(q)

ψq,pq?y−−−−−→ L′q

L
ψp∧ψq,p.e_q.y
−−−−−−−−−−→ L[p 7→ L′p, q 7→ L′q]

L(r1)
ξr1 ,i

{r1,...,rn}
r1−−−−−−−−−−→ L′r1 · · · L(rn)

ξrn ,i
{r1,...,rn}
rn−−−−−−−−−−→ L′rn

L ξr1∧···∧ξrn ,i
{r1,...,rn}

−−−−−−−−−−−−−−−→ L[r1 7→ L′r1 , . . . , rn 7→ L′rn ]

L(r) ψ,τ−−→ L′r

L ψ,τ−−→ L[r 7→ L′r]

Fig. 9: Abstract operational semantics of families of local programs.
L[r 7→ L′

r] denotes the update of the image of r in L to L′
r.

q.y :=e � r ={
q.y :=e if: r = q

τ otherwise

p.e_q.y � r =


pq !e if: r = p

pq?y if: r = q

τ otherwise

iR � r ={
iRr if: r ∈ R
τ otherwise

(a) Global actions

skip � r = skip

G1 ◦G2 � r = (G1 � r) ◦ (G2 � r)

∧
{er̂}r̂∈R � r ={
er if: r ∈ R
true otherwiseif ψ G1 G2 � r = R.if (ψ � r) (G1 � r) (G2 � r)

while ψ {ψinv}G � r = R.while (ψ � r) (G � r)

if ψ G1|R1 G2|R2 � r = if (ψ � r)||R\(R1∪R2∪{r})| (G1 � r)|R1∩{r} (G2 � r)|R2∩{r}

while ψ {ψinv}G|∅ � r = while (ψ � r)||R\{r}| (G � r)|∅

(b) Global programs. Let ◦ ∈ {;, ‖} and r ∈ R.

Fig. 10: Decomposition of global actions/programs into local actions/programs

which “togetherness” arises (i.e., channels and barriers) are left implicit; they
are implementation details. The concrete termination and reduction relations
are induced by the same rules as in Fig. 5 (page 11), mutatis mutandis.

To decompose global actions and programs into local ones, let � denote a pro-
jection function; it is induced by the equations in Fig. 10. In words, � consumes
a global program G and a role r as input, and it produces a local program G � r
as output. The idea is that � is sound and complete: roughly, G can terminate
or reduce by executing γ if, and only if, G � r can similarly terminate or reduce
by executing γ � r. The interesting cases of Fig. 10 are as follows:

– For γ (any global action), there are basically two possibilities. If r is a subject
of γ, then γ � r is the contribution of r to γ (i.e., an assignment remains
an assignment; a communication is split into a separate send and receive; a
collection of private decisions is split into separate ones). If r is not a subject
of γ, then γ � r is a delay (i.e., r sits idle, without contributing to γ).

– For G = if ψ G1|R1 G2|R2 , the definition of � is most complicated. We explain
it from the perspective of soundness. There are three situations to consider.
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First, suppose that G reduces by executing a global action γ in which r does
participate. To ensure that G � r can similarly reduce by executing γ � r, it
will be sufficient to register in G � r whether or not r has already entered a
branch in G (and which one). This is achieved by “ |R1∩{r}” and “|R2∩{r}”.
Second, suppose that G reduces by executing a global action i{r0} in which r
does not participate, using rule [→-NIf1] or rule [→-NIf2], so another role
r0 enters G1 or G2. To ensure that G � r can similarly reduce by executing τ,
it will be sufficient to register in G � r the number of roles that have not yet
entered a branch in G, excluding r. This is achieved by “ ||R\(R1∪R2∪{r})|”.
Third, suppose that G reduces by executing a global action γ in which r
does not participate using rule [→-NIf3] or rule [→-NIf4]. To ensure that
G � r can similarly reduce, no additional information needs to be registered.

7.2 Operational Equivalence

Informally, our main theorem for local programs and projection is as follows:
if the global program is well-formed, and if the computed precondition is true
in the initial state, then operational equivalence is provided. In the rest of this
section, we first present auxiliary lemmas; next, we present the main theorem.

The first lemma pertains to soundness of �. It states that if G is well-formed
and can terminate or reduce, then G � r can similarly terminate or reduce.

Lemma 7.

1. If XR(G) and r ∈ R and G ↓, then (G � r) ↓.
2. If XR(G) and r ∈ R and G ψ,γ−−→ G′, then (G � r)

ψ�r,γ�r−−−−−→ (G′ � r).

Proof. By induction on the derivation of G ↓ (item 1) and G ψ,γ−−→ G′ (item 2).
The interesting cases are rules [→-If1], [→-If2], [→-While1], and [→-While2]:
in those cases, we use premises XR(G) and r ∈ R to establish that r must have
its own conjunct in the multiparty condition, so it must contribute to γ.

The second lemma pertains to completeness of �. It states that if G is well-
formed, and if G� r can terminate, then G can similarly terminate. Furthermore,
it states that if G is well-formed, and if every G� r can reduce by executing γ � r,
for every subject r of γ, then G can similarly reduce.

Lemma 8.

1. If XR(G) and (G � r) ↓, then G ↓.
2. If XR(G) and (G � r)

ψr,γ�r−−−−→ L′
r, for every r ∈ subj(γ), then G ψ,γ−−→ G′ and

ψr = ψ � r and L′
r = G′ � r, for every r, for some ψ,G′.

Proof. By induction on the derivation of (G � r) ↓ (item 1) and the derivations
of (G � r)

ψr,γ�r−−−−→ L′
r, for every r ∈ subj(γ) (item 2). The interesting cases are

[→-Par1] and [→-Par2]: we use premise XR(G) to establish that either the LHS
is reduced in every G � r, or the RHS (otherwise, there is no unique G′).
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Thus, the previous lemmas show that a global program and its family of projec-
tions can simulate each other’s behaviour, at the abstract “top layer” of the oper-
ational semantics. The following theorem shows that this result can be extended
to the concrete “bottom layer”: it states that if G is well-formed, and if φ(G,χ) is
true in S, then (G,S) and ({G�r}r∈R,S) are weakly bisimilar (e.g., [30]), denoted
with ≈. This means that (G,S) and ({G � r}r∈R,S) can coinductively simulate
each other’s behaviour, modulo delays (i.e., operational equivalence).

Theorem 6. If XR(G) and S ∈ Jφ(G,χ)K, then (G,S) ≈ ({G � r}r∈R,S).

Proof. We prove the theorem using Lems. 7–8 and Fig. 5. See Appx. C [39] for a
more detailed overview of the steps, including a weak bisimulation relation.

8 Conclusion

We presented a new theory of choreographic programming. It supports for the
first time: construction of distributed systems that require decentralised de-
cision making; analysis of distributed systems to provide not only deadlock
freedom but also functional correctness. Both contributions are enabled by a
single new technique, namely a predicate transformer for choreographies.

The following corollary summarises our main theorems (Thms. 3–6):

Corollary 1. If global program G (with multiparty conditions in if/while-state-
ments) is well-formed, and if precondition φ(G,χ) is true in initial state S, then
the family of projections ({G�r}r∈R,S) is deadlock-free and functionally-correct.

For instance, in Sect. 2, we presented a deadlock-free global program for leader
election; in Appx. E [39], we demonstrate how to prove its functional correctness;
by Cor. 1, these properties are preserved by projection.

We implemented the new theory on top of the existing VerCors tool for
deductive verification [4]; we present this implementation elsewhere.

In future work, we aim to extend the new theory with: (1) asynchronous
communication; (2) a new version of merging [8,9,10] for decentralised decision
making (see also footnote 6); (3) more flexible interleaving by relaxing the dis-
jointness requirement for interleaving to support shared variables (e.g., using
concurrent separation logic [6,44]).

Acknowledgments Funded by the Netherlands Organisation of Scientific Re-
search (NWO): 016.Veni.192.103.
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