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Abstract. Multiparty session typing (MPST) is a method to automat-
ically prove safety and liveness of protocol implementations relative to
specifications. We present BGJ: a new tool to apply the MPST method in
combination with Java. The checks performed using our tool are purely
static (all errors are reported early at compile-time) and resource-efficient
(near-zero cost abstractions at run-time), thereby addressing two issues
of existing tools. BGJ is built using VerCors, but our approach is general.

1 Introduction

Construction and analysis of distributed systems is hard. One of the challenges is
this: given a specification S of the roles and the protocols an implementation I of
processes and communication sessions should fulfil, can we prove that I is safe
and live relative to S? Safety means “bad” communication actions never happen:
if a channel action happens in I, then it is allowed by S. Liveness means “good”
communication actions eventually happen (communication deadlock freedom).
Multiparty session typing (MPST) [14, 15] is a method to automatically prove
safety and liveness of protocol implementations. The idea is shown in Figure 1:

1. First, a protocol among roles r1, . . . , rn is implemented as a session of pro-
cesses P1, . . . , Pn (concrete), while it is specified as a global type G (abstract).
The global type models the behaviour of all processes together (e.g., “first,
a number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, G is decomposed into local types L1, . . . , Ln by projecting G onto
every role. Each local type models the behaviour of one process alone (e.g.,
for Bob, “first, he receives from Alice; next, he sends to Carol”).

3. Last, absence of communication errors is verified by type-checking every pro-
cess Pi against its local type Li. MPST theory assures that well-typedness
at compile-time implies safety and liveness at run-time.

The following simple example demonstrates global types and local types in Scrib-
ble notation [28], as used in the Scribble tool [16,17] for the MPST method.

Example 1. The Adder protocol [12] consists of two roles: Client (C) and Server
(S). Client either asks Server to add two numbers (Add-message with two Int-
payloads) or tells Server goodbye (Bye-message). In the former case, Server tells
Client the result (Res-message). This is repeated until Server is told goodbye.
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Fig. 1: MPST method
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Fig. 2: Example runs of Adder

1 global Adder(role C, role S) {
2 choice at C {
3 Add(Int , Int) from C to S;
4 Res(Int) from S to C;
5 do Adder(C, S); // recur
6 } or {
7 Bye() from C to S; } }

Fig. 3: Global type for Adder

1 local Adder(role C, role S) at C {
2 choice at C {
3 Add(Int , Int) to S; // send
4 Res(Int) from S; // receive
5 do Adder(C, S);
6 } or {
7 Bye() to S; } } // send

Fig. 4: Local type for Client in Adder
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Fig. 5: Workflow of API-generation-based tools for the MPST method

Figure 2 shows three example runs as sequence diagrams. Figure 3 shows the
global type. Notation “m(t1, . . . , tn) from p to q” specifies the communication of
a message of type m with payloads of types t1, . . . , tn from role p to role q. No-
tation “choice at r { G1 } or · · · or { Gk }” specifies a choice among branches
G1, . . . , Gk made by role r. Figure 4 shows the local type for Client. The notation
for local types resembles the notation for global types, except that communica-
tions are broken up into sends (“m(t1, . . . , tn) to q”) and receives (“from p”). ut

A premier approach to apply the MPST method in combination with main-
stream programming languages is based on API generation (Figure 5); it is used
in the majority of MPST tools, including Scribble [16, 17], its extensions [5, 8,
9, 22, 23, 25, 27, 32, 35], StMungo [21], νScr [34], mpstpp [20], and Pompset [6].
The main ideas, first conceived by Deniélou/Hu/Yoshida and pursued in Scrib-
ble, follow two insights: (a) local types can be interpreted as deterministic finite
automata (DFA) [10, 11], where every transition models a send/receive action;
(b) DFAs can be encoded as object-oriented application programming interfaces
(API) [16,17], where classes and methods model states and transitions.

Example 2. Figure 6 shows the DFA and a Java API for Client in Adder (Ex-
ample 1), in the style of Scribble. Transition labels of the form q !m(t1, . . . , tn)
and p?m(t1, . . . , tn) in the DFA specify the send to q and the receive from p of a
message of type m with payloads of types t1, . . . , tn. Classes State1, State2, and
State3 in the API correspond to states 1, 2, and 3 of the DFA; the methods of
class Statei in the API correspond to the transitions from state i in the DFA.

Figure 7 shows a process for Client, using the Java API. The idea is to write
method client that consumes an “initial state object” s1 as input and produces
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1 class UseOnce { // superclass
2 boolean b = false;
3 void use() { if (b) throw new RuntimeException (); b = true; } }
4

5 class State1 extends UseOnce { // subclass
6 State2 sendAddToS(int x, int y) { use (); ... }
7 State3 sendByeToS () { use(); ... } }
8

9 class State2 extends UseOnce { // subclass
10 State1 recvResFromS(int[] buff) { use(); ... } }
11

12 class State3 extends UseOnce { }

1 2

3

S !Add(Int,Int)

S?Res(Int)

S !Bye()

Fig. 6: DFA and Java API for Client in Adder (Scribble-style)

a “final state object” s3 as output. First, the only communication actions that
can be performed, are those for which s1 has a method. When called, the com-
munication action is performed and a fresh “successor state object” s2 (line 4)
or s3 (line 8) is returned. Next, the only communication actions that can be
performed, are those for which s2 or s3 has a method. And so on. By using state
objects in this way, a run of method client simulates a run of the DFA. ut

1 State3 client(State1 s1) {
2 int x = 1; int y = 2;
3 while (x + y < 100) {
4 State2 s2 = s1.sendAddToS(x, y);
5 int[] buff = new int [1];
6 s1 = s2.recvResFromS(buff);
7 x = y; y = buff [0]; }
8 State3 s3 = s1.sendByeToS ();
9 return s3; }

Fig. 7: Process for Client in Adder

However, existing API-generation-
based tools that follow Example 2 in
MPST practice, do not fully meet the
promise of MPST theory, in two ways:

1. Mixed static/dynamic checks:
To ensure safety and liveness, ev-
ery non-final state object must be
used linearly (exactly one method
call). However, the type systems of most mainstream programming languages
are too weak to check linear usage statically. Instead, dynamic checks are
needed (e.g., method use in Figure 6). As a result, MPST practice is weaker
than MPST theory: in MPST practice, some errors are reported late at run-
time, whereas in MPST theory, all errors are reported early at compile-time.

2. Resource-inefficient checks: Every time when a communication action is
performed, a fresh state object is created. This costs time (allocation; garbage
collection) and space. As a result, MPST practice is costlier at run-time than
MPST theory: in MPST practice, API-encodings of DFA-interpretations of
local types have a real footprint (proportionate to the number of communica-
tion actions), whereas in MPST theory, local types are zero cost abstractions.

In this paper, we present BGJ : a new API-generation-based tool to apply the
MPST method in combination with Java. The checks performed using BGJ are
purely static (all errors are reported early at compile-time) and resource-efficient
(near-zero cost abstractions at run-time), thereby addressing the issues above.
Instead of building a new static analyser from scratch, we leverage a state-of-the-
art deductive verifier for Java, namely VerCors [2]. Under active development for
years, VerCors has been used in industrial case studies, too [18,26,30]. We note
that our approach is generic, though, while our current tool is VerCors-specific.
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1 class DFA {
2 int state;
3 //@ ensures Perm(state , write );
4 //@ ensures state == 1;
5 DFA() { state = 1; }
6

7 //@ context Perm(state , write);
8 //@ requires state == 1;
9 //@ ensures state == 2;

10 void sendAddToS(int x, int y) {
11 state = 2; ... }

12 //@ context Perm(state , write);
13 //@ requires state == 1;
14 //@ ensures state == 3;
15 void sendByeToS () {
16 state = 3; ... }
17

18 //@ context Perm(state , write);
19 //@ requires state == 2;
20 //@ ensures state == 1;
21 int recvResFromS () {
22 state = 1; ... } }

Fig. 8: Java API for Client in Adder (BGJ-style)

2 Usage: BGJ in a Nutshell

BGJ follows the same workflow as in Figure 5. We explain the steps below.

Steps 1-3: global types; local types; DFAs. First, the programmer manually
writes a global type in Scribble notation (e.g., Figure 3). Next, BGJ automati-
cally projects the global type to local types, and it automatically interprets the
local types as DFAs. This is standard and as usual [16,17].

Step 4: APIs. Next, BGJ automatically encodes the DFAs as APIs. Our ap-
proach is to encode a DFA of n states as an API of a single class instead of n
classes (Figure 6). At run-time, only one instance of this class is created (“near-
zero cost abstraction”); this instance allows any number of usages (method calls).
To be able to check that these usages are proper, a key novelty of our approach
is that BGJ also generates annotations for method contracts, Hoare-logic-style.

Example 3. Figure 8 shows the Java API for Client in Adder (Example 1), gener-
ated using BGJ (cf. Figure 6). Field state of class DFA identifies the current state;
the methods of class DFA correspond to transitions. The annotations (“//@ ...”)
define for each method: a precondition (“requires”; what must be true before a
call?), a postcondition (“ensures”; what will be true after?), and a method in-
variant (“context”; read/write permissions for which fields are needed?). ut

1 //@ context Perm(a.state , write)
2 //@ requires a.state == 1;
3 //@ ensures a.state == 3;
4 void client(DFA a) {
5 int x = 1; int y = 2;
6 //@ loop_invariant a.state == 1;
7 while (x + y < 100) {
8 a.sendAddToS(x, y);
9 x = y; y = a.recvResFromS (); }

10 a.sendByeToS (); }

Fig. 9: Process for Client in Adder

Step 5: processes. Last, the pro-
grammer manually writes processes
using the APIs and automatically ver-
ifies proper usage with VerCors (i.e.,
methods are called only if the precon-
ditions hold). These checks are purely
static. If successful, safety relative to
the global type and liveness (com-
munication deadlock freedom) are as-
sured; else, a bug is found (“all errors are reported early at compile-time”).

Example 4. Figure 9 shows a process for Client in Adder (Example 1), using the
Java API in Figure 8. It resembles Figure 7, except that method client and the
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loop are annotated with a simple contract and invariant. Using VerCors, we can
verify that the methods are called only if the preconditions hold. Conversely, if
we duplicate line 8, then VerCors reports an error: consecutively sending two
Add-messages is forbidden. This can be detected only dynamically in Figure 7
(i.e., a RuntimeException would be thrown in UseOnce of Figure 6). ut

3 Implementation

BGJ is implemented in Java. It reuses the front-end of Scribble for global types,
local types, and DFAs in steps 1-3 and, thus, supports the same features (in-
cluding input branching). The encoder of DFAs as APIs in step 4 is new. It
generates two versions of every API: concrete (e.g., Figure 8) and abstract (e.g.,
Figure 8 without “...”). The concrete API is for running a process. The abstract
API, which omits all verification-irrelevant details, is for verifying a process.3 At
run-time, TCP is used to transport messages between processes.

Besides the APIs, BGJ also generates “skeletons” of process code. These
skeletons represent the basic control flow (adapted from the DFAs) with send...
and recv... method calls in the right places (guaranteed to pass verification).
The skeletons can subsequently be filled in with the actual computations.

4 Preliminary Evaluation

We obtained first practical experience with BGJ to study its two improvements.
Regarding “all errors are reported early at compile-time”, we investigated how
much time the verification step of VerCors takes for eight example protocols in
Scribble’s repository [13]. Figure 10 shows the results, averaged over thirty runs,
using generated skeletons as process code. A preliminary conclusion is that the
extra time can be low enough (worth the effort4) for our approach to be feasible.

Regarding “near-zero cost abstractions at run-time”, we investigated run-time
overhead of a Scribble-based process (e.g., Figure 6) vs. a BGJ-based process
(e.g., Figure 8) for Client in Adder. We factored out code common to both ver-
sions (e.g., actual transport of messages over the wire), to be able to specifically
measure the impact of the differences (methodology of Castro et al. [5]). Av-
eraged over thirty runs, the Scribble-based process and the BGJ-based process
3 The generated annotations are compatible with VerCors 1.0 and above; VerCors can
be used as-is. A limitation of our approach is that VerCors supports only a subset
of Java. This affects the set of Java features supported for processes.

4 Usage of BGJ requires two kinds of effort. First, a method in hand-written process
code needs to be annotated if the body uses a generated API. All the other code—
typically the vast majority of the program (e.g., business logic, database access)—can
be tagged to be skipped by VerCors. The few annotations to be added, are only about
the state of the DFA at the beginning/ending of a method (pre/postconditions), or
at the beginning of each iteration (loop invariants). This is similar to the effort of
manually tracking state types when using the existing Scribble. Second, the validity
of the annotations need to be checked by VerCors. This is fully automated.
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protocol #roles time time
#roles

Adder 2 15.1 7.6
Booking 3 24.3 8.1
BuyerBrokerSupplier 4 30.4 7.6
Fibonacci 2 14.9 7.5

protocol #roles time time
#roles

HTTP 2 40.0 20.0
Negotiate 2 17.2 8.6
SMTP 2 24.7 12.4
TwoBuyer 3 22.8 7.6

Fig. 10: Time of VerCors (in seconds)

completed 231 (Integer.MAX_VALUE) iterations in 5221ms and 974ms, respectively.
Our preliminary conclusion is that our approach is indeed more resource-efficient.

5 Conclusion

Related work. The combination of the MPST method and deductive verifica-
tion is largely unexplored territory. The only other work, by López et al. [24],
uses deductive verifier VCC [7] to statically check safety and liveness of C+MPI
protocol implementations relative to MPST-based specifications. Their approach
is very different from ours, though, as it is not based on API generation.

The approach of encoding DFAs of n states as APIs of a single class was
recently studied by Cledou et al. [6], by leveraging advanced features of the
type system of Scala 3. Their approach does not address the issues in Section 1,
though, whereas our approach does. Previous attempts to address the issue of
“mixed static/dynamic checks” either target a programming language with a
stronger type system (Rust) [8, 9, 22, 23], or adopt callback-style APIs in the
specific context of event-based programming [34, 35]. In contrast, our approach
does not rely on (the strength of) the type system of the targeted programming
language, and it supports traditional procedural/object-oriented programming.

Closest to BGJ is StMungo [21]: the approaches of both tools are similar, but
the underlying static analysis techniques differ. BGJ leverages method contracts
and deductive verification, while StMungo is based on typestate [33]. A key
advantage of using deductive verification is that it immediately opens the door
to reasoning about functional correctness (next paragraph).

Future work. There are two next steps. First, now that we have the infras-
tructure to combine the MPST method and deductive verification, we are keen
to explore their further integration to reason about functional correctness of dis-
tributed systems. VerCors is based on concurrent separation logic [4,29], so key
capabilities to reason about concurrency are already in place. This is connected
to work in which separation logic is used to control I/O operations (e.g., Pen-
ninckx et al. [31]). Second, while the usage of deductive verification is central to
BGJ, our approach does not crucially depend on VerCors: we chose it because it
is a fully automated, well-supported deductive verifier for Java, but other tools
(e.g., KeY [1], VeriFast [19]) offer opportunities worth investigating, too.
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Data Availability Statement

The artifact is available on Zenodo [3]. It contains: (a) our tool and its dependen-
cies; (b) material to replicate the example in Section 2; (c) material to replicate
the experiments in Section 4.
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