Discourje: Runtime Verification of
Communication Protocols in Clojure

TACAS

Ruben Hamers! and Sung-Shik Jongmans!+2 Artifact
Evaluation

2020
2 CWI, Amsterdam, the Netherlands Accepted

! Open University, Heerlen, the Netherlands

Abstract. This paper presents Discourje: a runtime verification frame-
work for communication protocols in Clojure. Discourje guarantees safety
of protocol implementations relative to specifications, based on an ex-
pressive new version of multiparty session types. The framework has a
formal foundation and is itself implemented in Clojure to offer a seamless
specification—implementation experience. Benchmarks show Discourje’s
overhead can be less than 5% for real/existing concurrent programs.

1 Introduction

Background. To take advantage of today’s and tomorrow’s multi-core pro-
cessors, shared-memory concurrent programming—a notoriously complex enter-
prise—is becoming increasingly important. To alleviate some of the complexities,
in addition to low-level synchronization primitives, several modern programming
languages have started to offer core support for higher-level communication prim-
itives as well, in the guise of message passing through channels (e.g., Go [25],
Rust [42], Clojure [17]). The idea is that, beyond their usage in distributed com-
puting, channels can also serve as a programming abstraction for shared memory,
supposedly less prone to concurrency bugs than locks, semaphores, and the like.
However, in a recent study of 171 concurrency bugs in popular open source Go
programs [48], Tu et al. found that “message passing does not necessarily make
multi-threaded programs less error-prone than shared memory.”

From a programmer’s perspective, a key problem is this: if we already know
which roles (threads), infrastructure (channels between threads), and protocols
(communications through channels) our program should consist of, then how can
we ensure our implementation is indeed safe relative to our specification? Safety
means “bad” channel actions never occur: if a send, receive, or close happens
in the implementation, then it is allowed by the protocol in the specification.
For instance, typical protocols rule out common message-passing concurrency
bugs [48], such as sends without receives, receives without sends, and type mis-
matches (actual type sent # expected type received). Essentially, thus, we face
a classical verification problem, with classical ingredients: an implementation
language Z, a specification language S, and an inclusion relation <.

Over the past years, a significant body of research in this area has been based
on multiparty session types (MPST) [27]. The idea is to specify protocols as be-
havioral types [1,30] against which threads are subsequently type-checked; the

http://orcid.org/0000-0002-4394-8745

2 R. Hamers and S. Jongmans

SGlob spec. < S

projection
spec. ﬂv\‘ (compile-time)

Loc gLoc gLoc monitoring
S1°¢ 53¢ S3 (run-time)
type checking
I I I (compile-time)
impl.{ I I I3 impl.< I I I3
Fig.1. MPST Fig. 2. This paper

theory guarantees that static well-typedness of threads at compile-time implies
dynamic safety of their channel actions at run-time. Originally [27], Z was a
dialect of pi-calculus, S was a calculus of behavioral types, and < was defined
through formal typing rules, but more recently, practical implementations were
developed as well [14,28,29,37,38,44], where Z is an existing general-purpose lan-
guage (GPL; Erlang, F#, Go, Java, Scala), S is a new domain-specific language
(DSL; Scribble), and < encodes behavioral types in S as non-behavioral types
in Z (e.g., through custom communication APT generation [29]). These works
highlight two key strengths of the MPST methodology, namely it supports:

#1 fully automated verification of concrete programs (vs. abstract models);

#2 user-friendly programming language-based notation to write specifications of
protocols (vs. dynamic logic or temporal logic).

Problem. One of the key open problems of MPST concerns expressiveness. For
instance, suppose we need to write a program in which messages are repeatedly
communicated from threads I; and I, to thread I3, non-deterministically ordered
(i.e., standard producers—consumer); this protocol is not supported by MPST.

We identify two reasons why expressiveness is limited.

First, MPST were originally developed for distributed computing (service
choreographies [10,11]); accordingly, decoupled verification of roles (per-service
type-checking) has always been a key requirement [14]. This is reflected in the
MPST workflow (Fig. 1): first, the programmer writes a global protocol specifica-
tion; then, an MPST tool projects it onto every role to infer local protocol spec-
ifications; then, the implemented threads are type-checked. However, role-based
decomposition of global behavior into equivalent local behaviors often cannot be
done statically (e.g., [12]), so expressiveness is limited by “projectability”.

Second, MPST prescribes static type-checking, which limits expressiveness,
because: (a) type-checking is sound, but not complete, so the static MPST ap-
proach rejects implementations that are conservatively ill-typed but actually
safe; (b) protocols whose execution relies on value-dependent control flow are
supported only in limited circumstances. To alleviate (b), value-dependent type
constructors can be added to S [20,47], but this raises practical issues (i.e.,
dependent types are only scarcely supported by mainstream GPLs).

Discourje: Runtime Verification of Communication Protocols in Clojure 3

Contributions. To simplify shared-memory concurrent programming in lan-
guages with channels, we aim to consolidate strengths #1 and #2 (page 2), but
alleviate MPST’s expressiveness issues. Specifically, this paper is founded on two
tenets that depart from existing work in significant ways (Fig. 2).

First, we exploit the fact that in our context, channels serve “merely” as pro-
gramming abstractions for shared memory; there is no distribution whatsoever.
Thus, whereas MPST-based verification for distributed computing requires pro-
jection, this is not the case in our setting, opening the door to fully automated
projection-free MPST and eliminating a significant source of restrictions.

Second, instead of adopting MPST-based verification through static type-
checking at compile-time, we explore MPST-based verification through dynamic
monitoring at run-time. This enables soundness and completeness, while it also
supports value-dependent protocols in a generally implementable way (i.e., we are
not aware of a mainstream GPL that does not support our monitoring approach).

In this paper, we present our practical embodiment of these ideas: Discourje
(pronounced “discourse”), a runtime verification framework for communication
protocols in Clojure [17,26]. Discourje consists of two components: a DSL to spec-
ify protocols and construct monitors, and an API to implement protocols (sup-
plementing Clojure) and add instrumentation. While we could have developed
this framework for any language with channel-based programming abstractions,
including Go and Rust, Clojure is particularly interesting, because: (1) Clojure
has a powerful macro system that enabled us to develop the Discourje DSL as
an extension to Clojure, thereby offering programmers a seamless specification—
implementation experience; (2) contrasting Go and Rust, Clojure is not a sys-
tems language but an applications language, so runtime verification overheads
might be more tolerable. We summarize our contributions as follows:

— Overview (Sect. 2): Discourje guarantees safety of protocol implementa-
tions, it provides freedom from data races in pure Clojure, and it is more
expressive than existing MPST tools, as demonstrated through examples.

— Design (Sect. 3): We developed core calculi, including operational semantics,
for Clojure and the Discourje DSL as a theoretical foundation.

— Implementation (Sect. 4): We implemented Discourje fully in Clojure. The
Discourje DSL comprises Clojure macros, while the Discourje API is a wrap-
per around Clojure functions to add instrumentation, non-invasively.

— Evaluation (Sect. 5): Through benchmarks, we show that Discourje’s over-
head can be less than 5% for real/existing concurrent programs.

Our artifact is available at https://github.com/discourje.

2 Overview

Clojure (in a nutshell). Clojure [17,26] is a general-purpose, impure func-
tional language that compiles to Java bytecode. As a dialect of Lisp, Clojure fol-
lows the code-as-data philosophy, provides a powerful macro system, and adopts

https://github.com/discourje

4 R. Hamers and S. Jongmans

parenthesized prefix notation. Clojure offers asynchronous channel-based pro-
gramming abstractions through core library clojure.core.async [16]. In the an-
nual Clojure survey [15], Clojure programmers indicate “ease of development” is
more important than “runtime performance”; this makes Clojure an interesting
target for runtime verification (viz. overheads).

To introduce the core features of Clojure relevant to this paper, Fig. 3 shows a
channel-based concurrent Tic-Tac-Toe program in Clojure? while Fig. 4 summa-
rizes the meaning of every primitive (;;” indicates comments). Lines 1-9 define
constants (blank, cross, nought, initial-grid) and functions (get-blank, add,
not-final?) to represent Tic-Tac-Toe concepts. Lines 11-12 define two channels
(a->b and b->a) that implement the infrastructure through which players Alice
and Bob communicate. Channels in Clojure are bounded: sends/receives block
until a channel is not full/empty. Lines 14-24 and 25-35 define threads that im-
plement Alice and Bob. Both players execute a loop, starting with a blank grid.
In each iteration, Alice first gets the index of some blank space on the grid, then
plays a cross in that space, then sends a message to Bob to communicate the
index, then awaits a message from Bob, and then updates the grid accordingly;
Bob acts symmetrically. After every grid update, Alice or Bob checks if it has
reached a final configuration; if so, the loop is exited and channels are closed.

Every Clojure data structure, including the vector that implements the grid,
is persistent, and therefore, effectively immutable. This means that every opera-
tion on an existing data structure leaves it intact, and instead, it returns a new
data structure. Thus, Alice and Bob initially share the same initial grid, but
because it cannot be modified in-place, modifications need to be explicitly com-
municated. Persistence of Clojure data structures is also why we can guarantee
freedom from data races in pure Clojure (= Clojure without Java objects): if
users communicate only Clojure data through channels, race freedom is guaran-
teed (if Java objects are communicated, the user is responsible to avoid races).

Basic Discourje: Tic-Tac-Toe. A basic Discourje specification of the Tic-
Tac-Toe protocol for Alice and Bob is shown in Fig. 5. We typeset Discourje
“keywords” (which are actually just Clojure functions and macros) bold violet.
Lines 1-2 define two roles (role) to represent Alice and Bob. Lines 4-6 define
an auxiliary specification, inserted twice into the main specification (ins); it
states that the channels between Alice and Bob are closed (-##), in parallel (par).
Lines 7-13 define the main specification; it states that recursively (fix), first a
message of type Long (the index of a grid) is communicated from Alice to Bob
(-=>), and then from Bob to Alice, unless the channels are closed (the game is
done). Square brackets are used to build lists of sub-specifications (sequencing).
The Tic-Tac-Toe protocol depends on value-dependent control flow, as Alice
and Bob close the channels only once the grid has reached a final configuration.
This is a non-protocol-related property that no existing MPST tool supports.

3 Tic-Tac-Toe is a two-player game played on a 3x3 grid. Players take turns to fill the
initially blank spaces of the grid with crosses (“X”) and noughts (“O”). The first
player to fill three adjacent spaces, in any direction, with the same symbol wins.

o
o

(def

(def

(def
(def
(def

(def
(def

(thread ;; alice
(loop [g initial-grid]

Discourje: Runtime Verification of Communication Protocols in Clojure 5

blank " ") (def cross "x") (def nought "o")

initial-grid [blank blank blank :: an initial 3x3 grid of blank spaces,
blank blank blank :: implemented as a vector of length 9
blank blank blank]) :; (persistent data structure)

get-blank (fn [g] ...)) ;; returns a blank space in g

add (fn [g i x-or-o] ...)) :: returns g, but with i set to x-or-o

not-final? (fn [g] ...)) ;; returns true iff g is not final

a->b (chan 1)) (def b<-a a->b) ;; b<-a is an alias of a->b

b->a (chan 1)) (def a<-b b->a) ;; a<-b is an alias of b->a

5 (thread ;; bob
(loop [g initial-grid]

V)

N
o

(let [i (get-blank g) 27 (let [i (<!! Db<-a)

g (set g i cross)] 28 g (set g i cross)]
(> a->b i) 29 (if (not-final? g)
(if (not-final? g) 30 (let [i (get-blank g)
(et [i (<!! a<-b) 31 g (set g i nought)]

g (set g i nought)] 32 1! b->a i)

(if (not-final? g) 33 (if (not-final? g)
(recur g)))))) 34 (recur g))))))
(close! a->b)) 35 (close! b->a))

Fig. 3. Clojure implementation of Tic-Tac-Toe (dashed arrows: matching send/receive)

Library clojure.core (basic):

(def x e): first evaluates e to v; then binds x to v in the global environment.

(fn [z1 ... xn] e1 ... em): evaluates to a function with parameters 1, ...,
z, and creates a recursion point; then, when applied to arguments v, ..., Vn,
sequentially evaluates e1, ..., e, with z1, ..., , bound to vi, ..., vy.

(et [z1 e1 ... xn en] e): first evaluates e; to vi; then evaluates ex to va
with x1 bound to vi; ...; then evaluates e, to v, with z1, ..., xn—1 bound to vy,
..., Un—1; then evaluates e with x1, ..., z,, bound to v, ..., vp.

(Qoop [z1 e1 ... xn en] €): same as let, but also creates a recursion point.
(recur e; ... ep): first evaluates ei, ..., e, to vi1, ..., v,; then evaluates the
nearest recursion point with x1, ..., z, bound to v, ..., v,.

(if e1 es e3): first evaluates eq; if true, evaluates es; else, evaluates es.

Library clojure.core.async (concurrency):

(>11 ¢ e): first evaluates e to v; then sends v through channel c.
(<11 ¢): receives a value through channel c.

(close! c): closes channel c.

(chan n): evaluates to a channel with a buffer of size n.

(thread e): creates a new thread that evaluates e

Fig. 4. Clojure primitives

6 R. Hamers and S. Jongmans

1 (def alice (role "alice")) ;; roles 7 (def ttt (dsl ;; main spec

> (def bob (role "bob")) s (fix :X

3 9 [(-—> alice bob Long)

4 (def ttt-close (dsl ;; auxiliary spec 10 (alt (ins ttt-close)

5 (par (-## alice bob) 11 [(-==> bob alice Long)

6 (-## bob alice)))) 12 (alt (ins ttt-close)
13 (fix :XD)1)1))

Fig. 5. Discourje specification of Tic-Tac-Toe

10 (def m (moni (spec ttt)))
11 (def a->b (chan 1 alice bob m)) (def b<-a a->b)
2 (def b->a (chan 1 bob alice m)) (def a<-b b->a)

-

Fig. 6. Changes to Fig. 3 to monitor Alice and Bob against the specification in Fig. 5

To monitor the implementations of Alice and Bob against this specification,
first, we need to load library discourje. core.async instead of clojure.core.async
(implicitly loaded in Fig. 3). All other code modifications are shown in Fig. 6: on
line 10, the specification is evaluated to an internal form (spec) and wrapped in
a new monitor (moni), while on lines 11-12, we associate the intended sender, re-
ceiver, and monitor with the channels. No other changes are needed: notably, the
code for Alice (Fig. 3, lines 14-24) and Bob (lines 25-35) is unaffected; Discourje
is non-invasive to start using. Running the monitor alongside the implementa-
tion guarantees safety: if a non-compliant channel action were to be attempted,
the monitor prevents it from happening and throws an exception.

The implementation in Fig 3 can indeed violate the specification in Fig. 5:
the specification states channels are allowed to be closed only after (the re-
ceive of) the previous communication is done, but in the implementation, Alice
or Bob could attempt to close already before. In our artifact, we have a so-
lution where we mix channels with barrier synchronization from the standard
java.util.concurrent library (readily usable in Clojure), to let Alice and Bob
first await each other and then close. Thus, channel-based programming abstrac-
tions monitored through Discourje can be mixed seamlessly with other concur-
rency libraries, which happens regularly in message passing programs [46,48].

Advanced Discourje: common patterns. Discourje specifications of com-
mon patterns of communication are shown in Fig. 7; they make use of Discourje’s
role indexing and finite repetition (rep) features.

Imagine we have a sequence of worker threads, organized in a pipeline (i.e.,
the i-th worker receives from its predecessor, i—1, and sends to it successor,
i+1). Lines 1-2 define the specification of a communication from a worker to its
successor. Intuitively, succ is a function that maps three parameters to a specifi-
cation. For instance, (ins succ bob 5 Turn) inserts (-=> (bob 5) (bob 6) Turn),
where (bob 5) and (bob 6) are indexed roles. We note that every role created
with role allows indexing (with arbitrary types), and that specifications can be

© W N O o oA W N =

Discourje: Runtime Verification of Communication Protocols in Clojure 7

(def succ (dsl :w :i :t 11 (def one-one-one (dsl :m :w :k :t :u
(==> (C:iw :1) (:w (inc :1)) t))) 12 (rep alt [:i (range :k)]
13 [(-=> m C:w :1) :t)
(def pipe (dsl :w :k :t 14 (-=> (C:w :i) m :w)]))
(rep seq [:i (range (dec :k))] 15
(ins succ :w :i :t)))) 16 (def one-all-one (dsl :m :w :k :t :u
17 (rep par [:i (range :k)]
(def ring (dsl :w :k :t 18 [(-=> m C:w :1i) :t)
[(ins pipe :w :k :t) 19 (-=> (C:w :i) :m :u)]))

(-=> (:w (dec :k)) (C:w 0) :t)1))

Fig. 7. Discourje specification of common patterns

parametrized by roles (:w), indices (:1), and/or types (:t). We also note that any
Clojure function can be used in specifications (e.g., inc, to manipulate indices).
Lines 4-6 define the specification of a pipeline communication pattern; it
states that specification (ins succ :w :i :t) is repeated for each value :i from
0 to k-1, and the iterations are composed sequentially (seq). Lines 8-10 extend
the pipeline to a ring, where the last worker also communicates with the first.
Lines 11-14 define the specification of a communication from a “master” to
one of k workers, and back. Similarly, lines 16-19 define the specification of a
communication from a master to all of k workers, and back. In these specifica-
tions, loop iterations are composed alternatively (alt) and in parallel (par).

3 Design

Implementation calculus. To formalize our verification problem, we first de-
fine a calculus to model Clojure implementations. Let ¢ range over heap loca-
tions, x over variables, v over values, and I over implementations. The calculus
is generated by the following grammar:

va=nil | £ | fnxl | true | false | O] 1] 2] ..
ITi=v | L] x|defal |letaly Iy | loopx Iy Iy | recur I |
ifI1IoI3 | Iy - Io | send Iy Io | recv] | close I | chanl | I || I2

Calculus notation corresponds closely with Clojure notation (Fig. 4), with the
exception of application (I; I), sequencing (I - I3), and threading (17 || I2).
The operational semantics of the calculus is defined in terms of labeled re-
ductions of triples (I,£,H): I is an implementation, £ is a global environment
(from variables to values), and H is a heap (from heap locations to channel
states). Channel states are represented as pairs (w,n), where o is a list of values
(messages in transit, from left to right), and n the buffer size. Labels, ranged
over by «, are of the form ¢!v (send), £7v (receive), {# (close), and 7 (anything
else; we verify only channel actions). The reduction rules are shown in Fig. 8.
Rule [I-Ctxt] executes the first step of implementation I in context C: it
first substitutes I for O in C (notation: C[I]), and then executes the first step.

8 R. Hamers and S. Jongmans

(I,E,H) ? (r,e', [LCxt] Iv/x] i>a1’ - App)
(CH),E,H) = (C[I'],E,H") (fnzD)v,E,H) — (I',E,H)
E@=v (1 yay . [L-Def]
(z,&,H) = (v,E,H) (def zv,E,H) = (nil, E[z — v], H)
Iv/z]) & T -Let] I[v/z][(fn 2, (loop & @, I))/recur] < I’ -Loop]
(letxvI,E,H) = (I',E,H) (loopz v I,E,H) = (I',E,H) P
v € {true, false} (I,,E,H) = (I,,E,H) (I,E,H) S (I, €, H)
- — [I-If] — [I-Seq]
(f ¥ Lurue Traie; &, H) 25 (11, €, H) (0 1,EH) S (I E,H)
H(¢) = (@, n) and Lz‘fﬂ <n [I-Send] H(l) = (w- U;) [-Recv]
(send £v,E,H) =% (recv £,E,H) =%
(nil, &, H[C — (v, n)]) (v, €, H[l — (W, n)])
H(l) = (W, n) an(i n>0 [I-Close] H(¢) = L and [Ml >0 [I-Chan]
(close £,E,H) =, (chan v, &, H) —
(nil, &, 1] — (,0)]) (6, &, 1]l — (e, [v])])

Fig. 8. Operational semantics of the implementation calculus

Contexts are generated by the following grammar:

C:=01|CI| (fnxl)C | defaxC |letxCI | loopzCI |ifCLI|C-1T |
sendC I | send¢C | recvC | closeC | chanC | C||T | I|C

Rule [I-App] executes the first step of a function: it first substitutes value v for
variable z in body I (notation: I[v/z]), and then executes the first step. Rule [I-
Var] executes a read in the global environment. Rule [I-Def] executes a write to
the global environment (notation: £[x — v]). Rule [I-Let] executes the first step
of a let binder, similar to rule [I-App|. Rule [I-Loop] executes the first step of a
loop: it first substitutes value v for variable = (the loop parameter) in body I,
then substitutes the loop itself (wrapped in a function to rebind z in the loop’s
next iteration) for recur, and then executes the first step. Rule [I-If] executes
the first step of a branch of a conditional, if the condition is boolean. Rule [I-
Seq| executes the first step of the suffix of a sequence, after the prefix has been
executed using rule [I-Ctxt]. Rule [I-Send] executes the send through a channel,
if that channel exists and is not full. Rule [I-Recv] executes the receive through a
channel, if that channel exists and is not empty. Rule [I-Close] executes the close
of a channel, if that channel exists and is not yet closed. Rule [I-Chan] executes
the creation of a new channel.

Specification calculus. Next, we define a calculus to model Discourje specifi-
cations. Let p, ¢ range over roles, f over boolean functions (from the implementa-
tion calculus), n, m over number expressions (from the implementation calculus),

Discourje: Runtime Verification of Communication Protocols in Clojure 9

Sie{l,Q} \L

Sliand Szi
S1+ 520

Sy 821

Sl»J/ and Szi

[S}-One] S 11551

[S{-Alt) [S}-Seq] [S{-Par]

1]

Fig. 9. Operational semantics of the specification calculus (termination)

(f ’U7®7®) ;* (true,@,@) S = n|-»qlm
plrlalm] v Srame - Com] pﬁ]q}[muf fs-ci
pln]—q[m]: f — p[njg[m]?v — 1 S——1
Sic(1ay 5 8 S 25y Sy and S, 2 54
’75 [S-Alt] — [S-Seq] 5 [S-Seq2]
S1 4+ Sy — S’ 51~Sz—>Si~Sg SlsQ%Sé
S[fixX §/X] 2> ' S Losy Sy 25 84
3 [S-Rec] 3 [S-Parl] 5 [S-Par2]
fix XS =95 St]| S2 = S1 || S2 St]| S2 = S1 || S%
Sn/z] @ (... ® (S[n'=1/z] ® S[n'/z])) LNy
[S-Rep]

® B /
®n§z§n’ S—=58

Fig. 10. Operational semantics of the specification calculus (reduction)

and ® over {+,-,||}. The calculus is generated by the following grammar:

$ u=[1] | plnl—=qim]:f | [plnlalm]?v] | pln]+qim] | Si+ 52 | Si-S; |
SillS: | BxXS | X | @Fcpcn S

Calculus notation corresponds with Discourje notation (Sect. 2): p[n] —q[m]: f
specifies communication of a value that satisfies f from p[n] to p[m]; p[n] - q[m)|
specifies closing of the channel from p[n] to g[m]; S1 ® S specifies the alterna-
tive, sequential, and parallel composition of S; and Ss; fix X .S and X specify
recursion; and ®§< L<ns O specifies repetition of S for every value x between n
and n’, where iterations are composed using ®. “Boxed” specifications (1 and
p[n]g[m]?v; the box is not part of the syntax) are auziliary in the sense they
are used in defining the operational semantics (below), but they are not written
directly in specifications by programmers: 1 specifies a skip; p[n]q[m]?v specifies
a receive of v by g[m], previously sent by p[n].

The operational semantics of the calculus is defined in terms of termination
predicate | and labeled reduction relation —. Labels, ranged over by (3, are of the
form pln)g[m]!v (send), p[n|g[m]|?v (receive), and p[n]g[m]# (close). The termi-
nation and reduction rules are shown in Figs. 9-10. (This operational semantics
coincides with Basic Process Algebra [22], plus free merge, recursion, and rep-
etition.) Rule [S-Com] induces two reductions (first a send, then a receive), via
auxiliary specification p[n|g[m]?v. We note that the specification calculus has no
T-reductions (which are not monitored; we verify only channel actions). We also
note that it can express some, but not all, context-free languages: it can count
(using), but it cannot encode a stack.

10 R. Hamers and S. Jongmans

MONITOR INSTR.
spec moni O H API
R e B = | | SO | I IR
Fig.11. DSL workflow Fig.12. API workflow

Inclusion relation. Finally, we define a relation to decide if the behavior of an
implementation [is included in the behavior of a specification S.

First, let T range over functions from heap locations to sender—receiver pairs;
informally, 1 establishes a correspondence between channel references in the im-
plementation (characterized by their heap locations) and channel references in
the specification (characterized by the roles that use them as sender/receiver).

Next, let —; C —. We call —; an execution of I if it satisfies these conditions:

— (1,0,0) %, (I, &' H);

—if (I,E,H) S, (I', &, H'), then (I, &', H) a—,n (I",&" H") or I" is a value;

—if (I,E,H) 25 (I}, &, Hy) and (I,E,H) 2251 (I}, EL,Hb), then oy = ay
and (I1, &0, 1)) = (I}, €, Hb).

_ Finally, a (f, —r)-simulation R is a binary relation such that if (I,E,H) S
(I',&',H') and (I,€,H) R S, then for some S’:

— if a € {£lv,£7v, {4} for some £, v, then S O/, o and (I, H)R S,

— ifa=r, then (I',&',H') R S.

In words, (f ,E,H) R S iff whenever I can reduce to I’, S can reduce accordingly
to S’ (and I’ and S’ are again related by R), up to 7-reductions (R is weak [24]).

Implementation I is safe relative to specification S, denoted as I < S, if for
every execution —; of I, there is a (f, —)-simulation R such that (I,0,0) R S.

4 Implementation

The DSL. The DSL consists of: Clojure macros to write specifications (cf.
syntax of the specification calculus; Sect. 3); Clojure data structures to represent
specifications as state machines (cf. operational semantics of the specification
calculus); Clojure functions to instantiate these data structures and construct
monitors. The workflow is shown in Fig. 11: first, the programmer writes a
specification S using the macros; then, at run-time, function spec is applied to S
to expand and evaluate the macros to a data structure [S]; then, function moni
is applied to [S] to construct a monitor.

Essentially, the monitor provides two operations, depicted as “lollipops” in
Fig. 11: checking if a given channel action « is allowed by [S] (formally: S
S’ for some S'), and subsequently updating [S] to its successor. In this way,
effectively, the monitor incrementally builds a formal simulation to ensure safety
(Sect. 3, page 10). We note that checking/updating is protected by lock-free
synchronization (compare-and-set): an « reduction happens only if it was already
checked if « is allowed, and the state has not yet been updated after that check.

Discourje: Runtime Verification of Communication Protocols in Clojure 11

The API. The API consists of Clojure functions that act as proxies for Clo-
jure’s own functions to send, receive, close channels, and construct channels. The
workflow is shown in Fig. 12: first, the programmer writes an implementation
I using Clojure’s own functions; then, by loading library discourje.core.async
instead of clojure.core.async, the programmer adds instrumentation to the im-
plementation that allows channel actions to be monitored. As the signatures of
Discourje’s send, receive, and close functions are identical to Clojure’s, adding
instrumentation in this way is non-invasive and nearly effortless; the only changes
needed, pertain to channel creation (Sect. 2, Fig. 6), since we require the pro-
grammer also to specify which roles will use the channel and associate a monitor
(this is the practical embodiment of function { in Sect. 3, page 10).*
Discourje’s send function works as follows. When invoked, first, it waits until
the underlying channel ¢ is not full (recall channels in Clojure are bounded and
blocking). Then, at time ¢, it calls the monitor associated with ¢ to check if
the send is allowed. If yes, at time t5, it calls the monitor to update accordingly
and the “actual send” happens through c; if no, only an exception is thrown.
If, between t; and to, multiple threads call the monitor to update, only one will
succeed; the others need to retry from the start. Discourje’s receive and close
functions work similarly. In this way, Discourje detects safety violations in a way
that is both sound (if an exception is thrown, the violating action really was not
allowed) and complete (if no exception is thrown, all actions were really allowed).

Extensions. We implemented a number of extensions to the basic framework:

— Multi-cast: Adding to Clojure’s send, receive, and close functions, the API
also contains a multi-cast function to send the same value through n>1 chan-
nels, along with special monitoring support in the DSL (more efficient than
monitoring individual communications). Also, the API contains a “multi-
receive” function that optionally synchronizes all receivers of a multi-cast.

— Java interoperability: Clojure compiles to Java bytecode and runs on the
JVM; this enabled us to extend Discourje to Java. Specifically, we wrote a
thin Java wrapper around Discourje, so Java programmers can easily con-
struct and use Discourje channels, write specifications, and have them moni-
tored from inside their Java programs, regardless of the threading mechanism
(e.g., classical Java threads, thread pools, and parallel streams can be used).

5 Evaluation

General setup. We developed Discourje for two primary usage types:

4 We currently support the following main channel operations of clojure.core.async:
sending, receiving, and closing. Discourje works out-of-the-box for all Clojure pro-
grams, except those that use unsupported clojure.core.async features; mixing
Discourje with other concurrency libraries is fine (Sect. 2).

An interesting next step is to also support clojure.core.async’s transducers (op-
erations on data-in-transit): to our knowledge, no existing work on MPST supports
transducers, so supporting those requires significant new theoretical work.

12 R. Hamers and S. Jongmans

A. as a testing/debugging tool for concurrent programs in development, to reli-
ably find/diagnose communication-related concurrency bugs;

B. as a fail-safe mechanism for concurrent programs in production, to prevent
propagation of spurious results caused by concurrency bugs to end-users (i.e.,
it is better to throw a runtime error, cf. ArrayIndexOut0fBoundsException.)

A key factor that determines Discourje’s fitness for purpose is overhead. We
therefore conducted two kinds of benchmarks: microbenchmarks to study the
scalability of Discourje and whole-program benchmarks to study the slowdown
it inflicts relative to unmonitored code.

We used two different hardware configurations to run our benchmarks: vmM2
is an instance of the TACAS’20 Artifact Evaluation Virtual Machine for Vir-
tualBox, configured with 2 virtual cores and 8 GB of virtual memory; LISA is
a high-end machine with 16 physical cores (Intel Xeon 6130 processor; hyper-
threading disabled) and 96 GB of physical memory (far more than needed for
our benchmarks). We hosted vM2 on a machine with 4 physical cores (Intel Core
i7-8569U; hyper-threading enabled) and 16 GB of physical memory.

Microbenchmarks. In the microbenchmarks, we studied Discourje’s scalabil-
ity under extreme circumstances where threads perform only sends/receives and
no real computations; this is the worst-case scenario for the lock-free algorithm
to synchronize monitor access, as it gives rise to maximal thread contention.

We considered three specifications to investigate the core features/operators
offered by the Discourje DSL in isolation, using our built-in common patterns
(Fig. 7): ring for sequential composition, one-one-one (OOOQ) for alternative
composition, and one-all-one (OAQ) for parallel composition. Each pattern was
recursively repeated (i.e., wrapped in (fix :X [... (fix :X)1). For Ring and
OAO, a round consists of 1000 repetitions; for OOO, a round consists of 1000-n
repetitions, where n is the number of worker threads.

For each implementation I € {Ring, 000,0AO} with n € {2,4,6,8,10,12,
14,16} worker threads,® we recorded the mean round latency uf in eight hours
of execution on LISA, the standard deviation o, and the coefficient of variation
¢l =" . We found ¢}, < 6% for all I and n, except ¢§°° = 14% and ¢g°° = 8%.

As a measure of scalability, we computed normalized means |ul| = e T
this metric is a dimensionless number that indicates the extent to which impleé-
mentations scale linearly in the number of worker threads, relative to n = 2. For
instance, if |ulg| = 1, I with 16 workers threads is exactly 8 x as slow as I with 2
worker threads; this is reasonable, because the worker threads perform 8x more
sends and receives in each round (due to the adversarial microbenchmark con-
ditions, the sends and receives are effectively linearized by the monitor, which
can check and update at most one channel action at a time).

The normalized means are shown in Fig. 13; our raw data (including standard
deviations) are included in our artifact. We summarize the findings:

5 For Ring, the total number of threads is n; for OO0 and OAO, the total number of
threads is n+1 (the master thread).

35

2.5

15

0.5

Fig. 13. Microbenchmarks on LISA: Ring
(blue), OO0 (red), and OAO (yellow);
number of threads (x-axis) vs. scalability

Discourje: Runtime Verification of Communication Protocols in Clojure

SRENEN

10

relative to n = 2 (y-axis)

4.5

35

25

15

1
0.5

4 8

12 16

1.06
1.05
1.04
1.03
1.02
1.01

1
0.99
0.98
0.97

12 14

4

16

8 12 16

1.01

0.99
0.98
0.97
0.96
0.95
0.94
0.93

15s 30s 45s 60s

1.06
1.05
1.04
1.03
1.02
1.01

0.99
0.98
0.97

13

CG FT IS MG

Fig.14. Whole-program benchmarks on
vM2: Chess (left) and NPB (right); play
time (x-axis, left) and program (x-axis,
right) vs. monitoring slowdown (y-axis)

1.02

1.015

1.01

1.005

1

0.995

0.99

4 8 12 16

2.
1.
0.

5

2
5
1
5

0

4

8

12 16

Fig. 15. Whole-program benchmarks on LisA: CG, FT, IS, and MG (from left to right);
number of threads (x-axis) vs. monitoring slowdown (y-axis)

— Ring (blue) scales sub-linearly. This is because at any point in time, only one
worker thread contends for monitor access (the current receiver or sender;
the others are blocked, waiting for incoming channels to become non-empty).

— 00O (red) scales linearly, stabilizing around a constant factor of 1.4. This
is because the number of branches in the monitor’s internal state machine
grows linearly in the number of worker threads. Thus, the cost of using the

monitor grows proportionately, but the factor is constant.

— OAO (yellow) scales super-linearly, getting progressively worse as the number
of worker threads increases. This is because all worker threads contend for
monitor access all the time, and the number of branches in the monitor’s
state machine increases linearly.

To conclude, Ring (which exercises sequential composition) enjoys excellent scal-
ability, while OOO (which exercises alternative composition) enjoys decent scal-

ability, even under the adversarial microbenchmark conditions. Scalability of

OAO (parallel composition) can be improved; we discuss one avenue in Sect. 7.

14 R. Hamers and S. Jongmans

‘Whole-program benchmarks. In our whole-program benchmarks, we studied
Discourje’s possible slowdown in five real(istic)/existing concurrent programs:

— Chess: Simulates a game of chess between two player threads.

— Conjugate Gradient (CG-n): Computes an estimate of the largest eigen-
value of a symmetric positive definite sparse matrix with a random pattern
of nonzeros, using the conjugate gradient algorithm, with n worker threads.

— Fourier Transform (FT-n): Computes the solution of a partial differential
equation, using the forward and inverse Fast Fourier Transform algorithm,
with 2-n worker threads.

— Integer Sort (IS-n): Computes a sorted list of uniformly distributed integer
keys, using histogram-based integer sorting, with n worker threads.

— Multi-Grid (MG-n): Computes an approximate solution u to the discrete
Poisson problem V2u = v, using the V-cycle multigrid algorithm, with 4-n
worker threads.

For Chess, we used Clojure code similar to threads Alice and Bob in Tic-Tac-Toe
(Fig. 3), combined with invocations of the open source chess engine Stockfish
10 (https://stockfishchess.org) to compute moves. For CG, FT, IS, and MG,
we adapted existing Java implementations from the NAS Parallel Benchmarks
(NPB) [23] suite, which consists of computational fluid dynamics kernels, by
taking advantage of our Java interoperability wrapper (Sect. 4) to replace the
monitor-based synchronization used in the original versions.

We also wrote specifications for these implementations in the Discourje DSL.
For Chess, the specification is the same as the Tic-Tac-Toe specification (Sect. 2);
for CG, FT, IS, and MG, the specifications consist of recursively repeated choices
among various instances of the one-all-one pattern (each of which involves dif-
ferent subsets of worker threads and message types); the key difference between
the specifications, then, is the frequency in which repetitions occur.

We recorded execution times of each of the implementations without and
with monitoring enabled, using existing/standardized workloads. For Chess, the
workload is controlled by the total amount of time each player has to compute
its moves during the entire game; we used the four smallest such workloads
supported by the open source chess server Lichess (https://lichess.org), namely
{15,30,45,60} seconds, and we limited games to a maximum of 40 turns per
player (UltraBullet chess).% For CG, FT, IS, and MG, the workload is controlled
by the input size; we used the standardized inputs that are predefined by NPB.

We ran Chess on vM2; we ran CG-n, FT-n, IS-n, and MG-n on vM2 for
n = 2 and on LISA for n € {2,4,6,8,10,12,14,16}. We repeated each of the
runs 50 times to smooth out variability; the resulting coefficients of variation are
below 5% for CG, FT, IS, and MG, and between 19%-22% for Chess (because
moves are not computed deterministically, which affects the number of turns per
game). As a measure of slowdown, we computed normalized means of execution
times with monitoring, p., against those without monitoring, fiy, (i.e., ﬁ) this

5 We allow concurrent “ponder” computations during opponents’ turns.

https://stockfishchess.org
https://lichess.org

Discourje: Runtime Verification of Communication Protocols in Clojure 15

metric is a dimensionless number that indicates the factor by which monitoring
slows down the implementation.

The normalized means are shown in Figs. 14-15; the raw data (including
standard deviations) are included in our artifact. We summarize the findings:

— For Chess, for three workloads, slowdowns are <1. As the number of instruc-
tions per channel action is, objectively, higher with monitoring than without,
we suspect these observed speedups might be an artifact of the variability in
the measurements. That said, the general trend suggests both usage types
of Discourje (page 12) are very well possible for Chess.

— For FT and IS, the slowdowns are low: less than 5% and 2% respectively. This
seems low enough not only for Discourje’s usage type A (testing/debugging
in development), but even usage type B (fail-safe mechanism in production).

— For CG and MG, the slowdowns are higher: less than 5x and 2.5x respec-
tively. Although this might be too much for Discourje’s usage type B, it
seems low enough for usage type A (cf. the industrial-strength Valgrind tool
for memory debugging [35], which typically inflicts a >10x slowdown).
The difference in performance between {FT, IS} and {CG, MG} may be
explained by the fact the latter are more communication-intensive than the
former, so the overhead of monitoring communications is more pronounced.

— For CG, FT, IS, and MG, the slowdowns grow only linearly as the number of
threads increases. This shows that the super-linear scalability we observed
under the adversarial microbenchmark conditions for the one-all-one pat-
tern, does not manifest in these real programs.

To conclude, we believe it is encouraging to see that even (extended versions
of) the specification that scaled poorest in our microbenchmarks, can give well
enough performance in real concurrent programs for both usage types A and B.

6 Related Work

Expressiveness issues of multiparty session types (MPST) have received some
attention, but efforts have primarily been geared towards adding more advanced
features (e.g., time [5,36], security [7,8,9,13], and parametrisation [14,20,39]); in
contrast, restrictions on the usage of core features like choice and interleaving
have remained, even though they limit MPST’s applicability in practice (e.g.,
our Tic-Tac-Toe specification cannot be expressed; Fig. 5). Recently, work has
been done to improve MPST’s expressiveness in this regard using static tech-
niques [31], but our specification language in this paper is still more expressive.

Closest to our work, then, are hybrid MPST approaches that combine static
type-checking with a form of distributed runtime monitoring and/or assertion
checking [3,4,19,36,37]. In contrast to this paper, however, these dynamic tech-
niques still rely on projection, which limits expressiveness (Sect. 1); none of the
specifications in this paper are supported.

Projection-free MPST has also been explored by Lépez et al. [34,43]. Their
idea is to specify MPI communication protocols in an MPI-tailored DSL, inspired

16 R. Hamers and S. Jongmans

by MPST, and verify the implementation against the specification using deduc-
tive verification tools (VCC [18] and Why3 [21]). However, this approach does
not support push-button verification: considerable manual effort is required. In
contrast, our approach is fully automated.

We are aware of only two other works that use formal techniques to reason
about Clojure programs: Bonnaire-Sergeant et al. [6] formalized the optional type
system for Clojure and proved soundness, while Pinzaru et al. [41] developed a
translation from Clojure to Boogie [2] to verify Clojure programs annotated with
pre/post-conditions. Ours is the first paper that targets concurrency in Clojure.

Verification of shared-memory concurrency with channels has received at-
tention in the context of Go [40,32,33,45]. However, emphasis in these works is
on checking deadlock-freedom, liveness, and generic safety properties, while we
focus on program-specific protocol compliance. Castro et al. [14] also consider
protocol compliance, but their specification language (of global types) is less
expressive than ours and does not support this paper’s examples.

7 Conclusion

We presented Discourje: a runtime verification framework for channel-based com-
munication protocols in Clojure. Discourje is based on a projection-free inter-
pretation of multiparty session types, trading static type-checking for dynamic
runtime monitoring to alleviate expressiveness issues. A key design principle of
Discourje has been ergonomics: we aim to make Discourje’s use as comfortable
as possible. Specifically, programmers can decide to start using Discourje at any
stage of development (and doing so requires little effort); Discourje is itself imple-
mented in Clojure (so no need to use a different IDE, learn completely new syn-
tax, or install special compilers); and Discourje can be used seamlessly alongside
other concurrency libraries. The framework has a formal foundation, and bench-
marks indicate that monitoring overhead can be less than 5% for real/existing
concurrent programs. This makes Discourje suitable both as a testing/debugging
tool in development, and as a fail-safe mechanism in production.

We list two interesting avenues for future work. First, we want to refine our
lock-free synchronization algorithm to enhance the way parallel composition is
handled. Second, a much more profound extension pertains to feedback and re-
covery. Specifically, we want to explore the idea that whenever a monitor detects
a violation, instead of throwing an exception, it should simply delay the violat-
ing action as a corrective measure, in an attempt to steer the implementation
toward safe behavior. When done naively, such delays can easily yield deadlocks,
so our plan is to combine this with runtime model-checking/reachability analysis
to check if eventually, the violating action is allowed (if yes, delay; if no, throw).

Acknowledgments. Funded by the Netherlands Organisation of Scientific Re-
search (NWO): 016.Veni.192.103. This work was carried out on the Dutch na-
tional e-infrastructure with the support of SURF Cooperative.

Discourje: Runtime Verification of Communication Protocols in Clojure 17

References

10.

11.

12.

13.

14.

15.

16.

17.

Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P., Gay,
S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi, V.,
Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida, N.:
Behavioral types in programming languages. Foundations and Trends in Program-
ming Languages 3(2-3), 95-230 (2016)

. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-

ular reusable verifier for object-oriented programs. In: FMCO. Lecture Notes in
Computer Science, vol. 4111, pp. 364-387. Springer (2005)

Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33-58 (2017)
Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract
for distributed multiparty interactions. In: CONCUR. Lecture Notes in Computer
Science, vol. 6269, pp. 162-176. Springer (2010)

Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: CONCUR.
Lecture Notes in Computer Science, vol. 8704, pp. 419-434. Springer (2014)

. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types

for clojure. In: ESOP. Lecture Notes in Computer Science, vol. 9632, pp. 68-94.
Springer (2016)

Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Typing access control and se-
cure information flow in sessions. Inf. Comput. 238, 68-105 (2014)

Capecchi, S., Castellani, 1., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. Mathematical Structures in Computer Science 26(8), 1352-1394
(2016)

Capecchi, S., Castellani, 1., Dezani-Ciancaglini, M., Rezk, T.: Session types for
access and information flow control. In: CONCUR. Lecture Notes in Computer
Science, vol. 6269, pp. 237-252. Springer (2010)

Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: ESOP. Lecture Notes in Computer Science, vol. 4421,
pp. 2-17. Springer (2007)

Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1-8:78
(2012)

Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure infor-
mation flow in multiparty communications. Formal Asp. Comput. 28(4), 669-696
(2016)

Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint apis
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1—
29:30 (2019)

Clojure Team: Clojure - State of Clojure 2019 Results (04-02-2019), Accessed 1
September 2019, https://clojure.org/news/2019/02/04/state-of-clojure-2019
Clojure Team: Clojure - Clojure core.async Channels (28-06-2013), Ac-
cessed 1 September 2019, https://clojure.org/news/2013/06/28/clojure-clore-
async-channels

Clojure Team: Clojure (nd), Accessed 1 September 2019, https://clojure.org

18

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

R. Hamers and S. Jongmans

Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C.
In: TPHOLSs. Lecture Notes in Computer Science, vol. 5674, pp. 23—42. Springer
(2009)

Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods in System Design 46(3), 197-225 (2015)

Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Logical Methods in Computer Science 8(4) (2012)

Filliatre, J., Paskevich, A.: Why3 - where programs meet provers. In: ESOP. Lec-
ture Notes in Computer Science, vol. 7792, pp. 125-128. Springer (2013)
Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2000)

Frumkin, M.A., Schultz, M.G., Jin, H., Yan, J.C.: Performance and scalability of
the NAS parallel benchmarks in java. In: IPDPS. p. 139. IEEE Computer Society
(2003)

van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555-600 (1996)

Go Team: The Go Programming Language (nd), Accessed 1 September 2019,
https://golang.org

Hickey, R.: The clojure programming language. In: DLS. p. 1. ACM (2008)
Honda, K., Yoshida, N.; Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273-284. ACM (2008)

Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE. Lecture Notes in Computer Science, vol. 9633, pp. 401-418. Springer
(2016)

Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE. Lecture Notes in Computer Science, vol. 10202, pp. 116-133. Springer (2017)
Hiittel, H., Lanese, 1., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1-3:36 (2016)

Jongmans, S.S., Yoshida, N.: Exploring type-level bisimilarity towards more ex-
pressive multiparty session types. In: ESOP 2020 (in press)

Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: POPL. pp. 748-761. ACM (2017)

Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: ICSE. pp. 1137-1148. ACM
(2018)

Lépez, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,
Yoshida, N.: Protocol-based verification of message-passing parallel programs. In:
OOPSLA. pp. 280-298. ACM (2015)

Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI. pp. 89-100. ACM (2007)

Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877-910 (2017)

Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in f#. In: CC. pp.
128-138. ACM (2018)

Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC. pp. 98-108. ACM (2017)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Discourje: Runtime Verification of Communication Protocols in Clojure 19

Ng, N., Yoshida, N.: Pabble: parameterised scribble. Service Oriented Computing
and Applications 9(3-4), 269-284 (2015)

Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: CC. pp. 174-184. ACM (2016)

Pinzaru, G., Rivera, V.: Towards static verification of clojure contract-based pro-
grams. In: TOOLS. Lecture Notes in Computer Science, vol. 11771, pp. 73-80.
Springer (2019)

Rust Team: Rust Programming Language (nd), Accessed 1 September 2019,
https://rust-lang.org

Santos, C., Martins, F., Vasconcelos, V.T.: Deductive verification of parallel pro-
grams using why3. In: ICE. EPTCS, vol. 189, pp. 128-142 (2015)

Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1-
24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

Stadtmiiller, K., Sulzmann, M., Thiemann, P.: Static trace-based deadlock analysis
for synchronous mini-go. In: APLAS. Lecture Notes in Computer Science, vol.
10017, pp. 116-136 (2016)

Tasharofi, S., Dinges, P., Johnson, R.E.: Why do scala developers mix the actor
model with other concurrency models? In: ECOOP. Lecture Notes in Computer
Science, vol. 7920, pp. 302-326. Springer (2013)

Toninho, B., Yoshida, N.: Certifying data in multiparty session types. J. Log.
Algebr. Meth. Program. 90, 61-83 (2017)

Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in go. In: ASPLOS. pp. 865-878. ACM (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Discourje: Runtime Verification of Communication Protocols in Clojure

