
Springer Nature 2021 LATEX template

The Discourje Project: Run-Time Verification

of Communication Protocols in Clojure

Ruben Hamers1, Erik Horlings1 and Sung-Shik Jongmans1,2*

1Department of Computer Science, Open University of the
Netherlands, Valkenburgerweg 177, Heerlen, 6419 AT, Limburg,

Netherlands.
2Centrum Wiskunde & Informatica (CWI), Stichting Nederlandse
Wetenschappelijk Onderzoek Instituten (NWO-I), Science Park

123, Amsterdam, 1098 XG, North Holland, Netherlands.

*Corresponding author(s). E-mail(s): ssj@ou.nl;

Abstract

To simplify shared-memory concurrent programming, languages have
started to offer core support for high-level communications primitives, in
the form of message passing though channels, in addition to lower-level
synchronization primitives. Yet, a growing body of evidence suggests
that channel-based programming abstractions also have their issues.
The Discourje project aims to help programmers cope with channels
and concurrency bugs in Clojure programs, based on dynamic analy-
sis. The idea is that programmers write not only implementations of
communication protocols in their Clojure programs, but also specifica-
tions. Discourje then offers a run-time verification library to ensure that
channel actions in implementations are safe relative to specifications.
The aim of this paper is to provide a comprehensive
overview of the current state of Discourje, including: case
studies, theoretical foundations, and practical aspects.

1

Springer Nature 2021 LATEX template

2 The Discourje Project

1 Introduction

To take advantage of modern multi-core processors, shared-memory concur-
rent programming—a notoriously difficult enterprise—has become increasingly
important. In the wake of this development, languages have started to offer
core support for high-level communication primitives, in the form of message
passing through channels (e.g., Go, Rust, Clojure), in addition to lower-level
synchronisation primitives. The idea is that channels can also serve as a pro-
gramming abstraction for shared memory beyond their usage in distributed
systems. Supposedly channels are less prone to concurrency bugs than locks,
semaphores, and the like. For instance, the official Go documentation recom-
mends programmers to “not communicate by sharing memory; instead, share
memory by communicating” [1].

Yet, a growing body of evidence suggests that channel-based programming
abstractions also have their issues. For instance, in the 2016–2018 editions of
the annual Go survey [2–4], “[respondents] least agreed that they are able to
effectively debug uses of Go’s concurrency features”, while in the 2019 edi-
tion [5], “debugging concurrency” has the lowest satisfaction rate of all eleven
“very or critically important” topics. Moreover, after studying 171 concurrency
bugs in popular open source Go programs [6], Tu et al. conclude that “message
passing does not necessarily make multi-threaded programs less error-prone
than shared memory.”

Several research projects have emerged that aim to help programmers cope
with channels and concurrency bugs in Go programs (e.g., [7–11]), based on
static analysis. The idea is to employ compile-time verification to complement
Go’s static type-checker in a way that fits established Go programming tech-
niques, practices, and culture. However, while similar techniques may be likely
to suit other statically typed languages as well (e.g., Rust), it remains an open
question if they are equally appropriate for dynamically typed languages (e.g.,
Clojure); technically, practically, and culturally, run-time verification may
fit such languages better. Discourje—pronounced “discourse”—is a research
project that aims to help programmers cope with channels and concurrency
bugs in Clojure programs, based on dynamic analysis.

1.1 Discourje in a Nutshell

1.1.1 From the Programmer’s Perspective

A major challenge to cope with channels and concurrency bugs is as follows:
how to ensure that an implementation I is safe relative to a specification S,
where S prescribes the roles (implemented as threads), the network (imple-
mented as channels between threads), and the protocols (implemented as
sessions of communications through channels) that I should fulfil. Safety means
that “bad” channel actions never happen: if a channel action happens in I,
then it is allowed to happen in S. For instance, typical specifications rule out
common concurrency bugs [6], such as sends without receives, receives without
sends, and type mismatches (i.e., actual type sent 6= expected type received).

Springer Nature 2021 LATEX template

The Discourje Project 3

The Discourje project offers a run-time verification library in Clojure, called
discourje, to ensure safety of I relative to S. The idea is to execute speci-
fication S—as if it were a state machine—alongside implementation I using
two typical run-time verification components (e.g., [12]): a monitor (of S) and
instrumentation (of I). Every time a channel action is about to happen in
I, the instrumentation quickly intervenes and first asks the monitor if S can
make a corresponding transition. If the monitor answers “yes”, both the chan-
nel action in I and the corresponding transition in S happen; if “no”, only
an exception is thrown. Thus, a channel action in I happens if, and only if, a
corresponding transition happens in S, in lockstep (i.e., “bad” channel actions
never happen).

The discourje library facilitates writing specifications, adding monitors,
and adding instrumentation to implementations written in Clojure. To make
discourje easy and non-invasive to start using, and inspired by recent editions
of the annual Clojure survey [13, 14] (respondents indicate that “ease of devel-
opment” is one of Clojure’s most important strengths; more so than “runtime
performance”), we emphasise ergonomics in discourje’s development:

• We leverage Clojure’s macro system to offer the specification language for
protocols as an embedded domain-specific language (DSL). As a result, the
programmer can write both specifications and implementations in similar
notation, using the same editor (no external tools needed), towards a seam-
less specification–implementation experience. Monitors can subsequently be
added with simple function calls.

• To add instrumentation, the only things the programmer needs to change in
an existing implementation, are: (1) to load discourje.core.async instead
of standard library clojure.core.async for channels; (2) to add a bit of
configuration data when channels are created. This means, in particular, that
the programmer does not need to write an implementation with discourje

in mind: instrumentation can straightforwardly be added afterwards.

• The following main functions and macros from clojure.core.async are cur-
rently supported: threadthreadthread (new thread), chanchanchan (new channel), close!close!close! (closing),
>!!>!!>!! (send), <!!<!!<!! (receive), and alts!!alts!!alts!! (selection).

When clojure.core.async was introduced in 2013 [15], already, it was sug-
gested that “certain kinds of automated correctness analysis” are possible,
but at the time, “no work [had] been done on that front”. To our knowledge,
Discourje is the first project that addresses this open problem.

1.1.2 From a Researcher’s Perspective

The Discourje project was originally conceived to explore a new direction in
research on multiparty session types (MPST): since the early achievements [16,
17], while substantial progress had been made both in MPST theory (e.g.,
extensions with time [18, 19], security [20–23], parametrisation [7, 24, 25]) and
in MPST practice (e.g., tools for F# [26], Go [7], Java [27, 28], Scala [29]),

Springer Nature 2021 LATEX template

4 The Discourje Project

Sglob

Sloc
1 Sloc

2 · · · Sloc
n

I1 I2 · · · In

decomposition
(compile-time)

decentralised
verification

(compile-time)

spec.

impl.

Fig. 1: Traditional MPST [16, 17]

S

I1 I2 · · · In

centralised
verification
(run-time)

spec.

impl.

Fig. 2: Discourje (this paper)

nearly all efforts had targeted the domain of statically typed languages and
distributed systems. By targetting the domain of dynamically typed languages
and shared-memory concurrent programs instead, the Discourje project set out
to enter uncharted waters. In particular, the main research question that has
been driving the project from the start has been how to take advantage of the
unique properties of the target domain to deliver “better” (by some definition)
tools. As a result, the “Discourje approach” has diverged considerably from
the “traditional MPST approach”.

To explain the two fundamental differences in more detail, first, Fig. 1
visualises the traditional MPST approach. It works as follows:

1. Initially, the programmer manually writes a “global” specification Sglob;
it prescribes the communication behaviour of all roles, collectively, from a
shared perspective (e.g.: “first, a number is communicated from Alice to
Bob; next, a Boolean is communicated from Bob to Carol or Dave.”)

2. Subsequently, an MPST tool automatically decomposes Sglob into role-
specific “local” specifications Sloc

1 , Sloc
2 , . . . , Sloc

n ; every Sloc
i prescribes the

communication behaviour of one role, individually, from its own perspec-
tive (e.g., for Bob: “first, receive a number from Alice; next, send a Boolean
to Carol or Dave”).

3. Finally, an MPST tool automatically verifies every thread Ii in the imple-
mentation against Sloc

i by means of static type-checking (in the style of
behavioural type systems [30, 31]). Now, MPST theory guarantees that
well-typedness at compile-time implies safety at run-time.

In contrast, Fig. 2 visualises the Discourje approach. It fundamentally differs
from the traditional MPST approach on two accounts:

• In the traditional MPST approach, to fit established programming tech-
niques, practices, and culture of statically typed languages, compile-time
verification has been a non-negotiable requirement. However, the Discourje
approach targets dynamically typed languages, which are technically, prac-
tically, and culturally different. As a result, the Discourje approach uses
run-time verification instead of compile-time.

Springer Nature 2021 LATEX template

The Discourje Project 5

• In the traditional MPST approach, to fit established programming practices
for distributed systems, decentralised verification (i.e., type-checking against
local specifications on a per-role basis) has been a non-negotiable require-
ment. However, the Discourje approach targets shared-memory concurrent
programs, without any form of distribution (i.e., all threads are executed on
the same machine). As a result, the Discourje approach uses centralised
verification without decomposition instead of decentralised.

Due to these two fundamental differences, the Discourje approach substan-
tially improves expressiveness by removing two limitations of the traditional
MPST approach. The first limitation pertains to compile-time verification vs.
run-time: the traditional MPST approach statically rejects ill-typed-but-safe
implementations (i.e., it is sound but not complete), whereas the Discourje
approach dynamically rejects only unsafe implementations (i.e., it is sound
and complete). The second limitation pertains to decentralised verification
vs. centralised: the traditional MPST approach relies on decomposition and
rejects specifications that cannot be decomposed in a behaviour-preserving
way (i.e., many grammatical specifications are unsupported; e.g., [32]), whereas
the Discourje approach does not rely on decomposition (i.e., all grammatical
specifications are supported).

Besides these two fundamental differences, the following strengths of the
traditional MPST approach remain consolidated:

• fully automated verification of concrete programs (vs. abstract models);
• user-friendly programming language-based notation to write specifications

(vs. dynamic logic or temporal logic).

1.2 This Paper

The aim of this paper is to provide a comprehensive overview of the current
state of the Discourje project. In Sect. 2, we present a few preliminaries on
Clojure. In Sect. 3, we demonstrate the usage of the discourje library in a
number of case studies. In Sect. 4, we present the theoretical foundations on
which discourje is built. In Sect. 5, we discuss practical aspects, including
details of discourje’s internals and results of performance experiments.

This paper substantially extends our TACAS 2020 paper [33] with mate-
rial from our ISoLA 2020 paper [34] (notably: case studies and new features)
and our ESEC/FSE 2021 paper [35] (notably: a built-in model checker for
specifications). To improve the presentation, the new material is integrated
throughout the paper instead of isolated in separate new sections.

Finally, Discourje is open-source: https://github.com/discourje.

2 Preliminaries on Clojure

Clojure [36–38] is a dynamically typed, functional language (impure) that
compiles to Java bytecode and runs on the JVM. It is a dialect of Lisp and has
a powerful macro system. In the 2019 edition of the Stack Overflow Developer

https://github.com/discourje

Springer Nature 2021 LATEX template

6 The Discourje Project

Standard library clojure.core:

• (defdefdef x e): first evaluates e to v; next binds x to v in the environment.
• (ififif e1 e2 e3): first evaluates e1; if true, evaluates e2; else, evaluates e3.
• (letletlet [x1 e1 ... xn en] e): first evaluates e1 to v1; next evaluates e2 to v2

with x1 bound to v1; ...; next evaluates en to vn with x1, ..., xn−1 bound
to v1, ..., vn−1; next evaluates e with x1, ..., xn bound to v1, ..., vn.

• (fnfnfn [x1 ... xn] e1 ... em): evaluates to a function with parameters x1, ...,
xn and creates a recursion point; next, when applied to arguments v1, ...,
vn, sequentially evaluates e1, ..., em with x1, ..., xn bound to v1, ..., vn.

• (looplooploop [x1 e1 ... xn en] e): same as letletlet, but also creates a recursion point.
• (recurrecurrecur e1 ... en): first evaluates e1, ..., en to v1, ..., vn; next evaluates

the nearest recursion point with x1, ..., xn bound to v1, ..., vn.

Standard library clojure.core.async:

• (threadthreadthread e): starts a new thread that evaluates e.
• (chanchanchan): creates a new unbuffered channel.
• (chanchanchan e): first evaluates e to number n>0; next creates a new buffered

channel of capacity n.
• (close!close!close! e): first evaluates e to channel c; next closes c.
• (>!!>!!>!! e1 e2): first evaluates e1 to channel c; next evaluates e2 to v; next

sends v through c.
• (<!!<!!<!! e): first evaluates e to channel c; next receives a value through c.
• (alts!!alts!!alts!! [a1 ... an]): for every ai of the form [ei,1 ei,2] (send) or ei

(receive), evaluates ei,1 or ei to channel ci, and next, evaluates ei,2 to v;
next, waits until one of these channel actions can be performed; next,
performs a channel action that can be performed (non-deterministically
selected if multiple are possible).

Fig. 3: Main Clojure functions and macros

Survey [39], Clojure was the 7th most loved language, outranking languages
including Go, C#, Scala, Java, C++, and C.

Channel-based programming abstractions are offered in Clojure through
standard library clojure.core.async [15]. It has both unbuffered and buffered
channels. In the absence of a buffer, both sends and receives are blocking
until a reciprocal channel action is performed on the other end of the channel.
In the presence of a bounded, n-capacity, order-preserving buffer, sends are
blocking until the buffer is non-full (next, a value is enqueued to the back of
the buffer), while receives are blocking until the buffer is non-empty (next, a
value is dequeued from the front of the buffer).

For reference, Fig. 3 summarises the main Clojure functions and macros
relevant to this paper; we clarify their usage in the next sections, by example.

Springer Nature 2021 LATEX template

The Discourje Project 7

write S

write I

run I
with S

fix S

fix I

check S

¬safe ∧
cause = ?bug¬bug

¬safe ∧ cause = I

safe

Fig. 4: Intended workflow of discourje

3 A Tour of Discourje

To demonstrate the usage of the discourje library, we take a 4-stop tour.
The first stop (Sect. 3.1) presents the intended workflow of discourje. The
remaining three stops (Sects. 3.2–3.4) present three Clojure programs that
we can specify and verify using discourje, each of which simulates a game
and requires unique features (i.e., Tic–Tac–Toe, Rock–Paper–Scissors, and Go
Fish). In each of these case studies, the safety property that discourje ensures
is that the players (i.e., threads) never violate the “interaction rules” of the
game (e.g., proper turn-taking), as stated in the specifications. We note that
discourje does not check full functional correctness (e.g., it ensures that play-
ers properly take turns to make moves, but it does not ensure that every move
is valid in the current game state).

As a notational convention, in the rest of this paper, the main Clojure func-
tions and macros are typeset in blue fontblue fontblue font, while the main discourje functions
and macros are typeset in red fontred fontred font.

3.1 The Workflow

Fig. 4 summarises the intended workflow of discourje:

• First, the programmer writes a specification S using discourje and, possibly
independently, an implementation I in Clojure.

• Next, the programmer runs I with S: during the run, a channel action in I
happens if, and only if, a corresponding transition happens in S (Sect. 1.1.1).

• When an unsafe channel action is attempted, an exception is thrown.

• Next, the programmer diagnoses the problem: if it is “clearly” a bug in I,
then they can fix I; else, they can analyse S using a built-in model checker
for S. In the latter case, the aim is to rule out bugs in S, so the programmer
can more confidently focus their attention on fixing I (even if the problem
is not “clearly” a bug in I, it can still be one, especially with concurrency).
The built-in model checker supports both generic sanity checks and protocol-
specific temporal requirements.

To illustrate the workflow, we consider a classical example from the MPST
literature, namely the Two-Buyer program: “Buyer1 and Buyer2 wish to buy
an expensive book from Seller by combining their money. Buyer1 sends the
title of the book to Seller, Seller sends to both Buyer1 and Buyer2 its quote,

Springer Nature 2021 LATEX template

8 The Discourje Project

1 (defroledefroledefrole :buyer1)
2 (defroledefroledefrole :buyer2)
3 (defroledefroledefrole :seller)

4 (defsessiondefsessiondefsession :two-buyer []
5 (catcatcat (-->-->--> String :buyer1 :seller)
6 (-->-->--> Integer :seller :buyer1)
7 (-->-->--> Integer :seller :buyer2)
8 (-->-->--> Integer :buyer1 :buyer2)
9 (-->-->--> Boolean :buyer2 :seller)

10 (parparpar (closecloseclose :buyer1 :buyer2) (closecloseclose :buyer1 :seller)
11 (closecloseclose :buyer2 :buyer1) (closecloseclose :buyer2 :seller)
12 (closecloseclose :seller :buyer1) (closecloseclose :seller :buyer2))))

Fig. 5: Specification of the Two-Buyer protocol

1 (defdefdef c1 (chanchanchan)) (defdefdef c2 (chanchanchan)) ;; from :buyer1 to :buyer2 and :seller
2 (defdefdef c3 (chanchanchan)) (defdefdef c4 (chanchanchan)) ;; from :buyer2 to :buyer1 and :seller
3 (defdefdef c5 (chanchanchan)) (defdefdef c6 (chanchanchan)) ;; from :seller to :buyer1 and :buyer2

4 (threadthreadthread ;; :buyer1
5 (>!!>!!>!! c2 "book")
6 (letletlet [x (<!!<!!<!! c5)
7 y (/ x 2)]
8 (>!!>!!>!! c1 y))
9 (close!close!close! c1)

10 (close!close!close! c2))

11 (threadthreadthread ;; :buyer2
12 (letletlet [x (<!!<!!<!! c6)
13 y (<!!<!!<!! c1)
14 z (= x y)]
15 (>!!>!!>!! c4 z))
16 (close!close!close! c3)
17 (close!close!close! c4))

18 (threadthreadthread ;; :seller
19 (<!!<!!<!! c2)
20 (>!!>!!>!! c5 (int 19))
21 (>!!>!!>!! c6 (int 19))
22 (println (<!!<!!<!! c4))
23 (close!close!close! c5)
24 (close!close!close! c6))

Fig. 6: Implementation of a Two-Buyer session

Buyer1 tells Buyer2 how much she can pay, and Buyer2 either accepts the
quote or rejects the quote by notifying Seller” [40].

Below, and indicate “actions” and “decisions” in Fig. 4, respectively.

First, we write the specification in Fig. 5. Lines 1–3 specify the roles, iden-
tified by :buyer1, :buyer2, and :seller, while lines 4–12 specify the protocol,
identified by :two-buyer. In general, (-->-->--> t p q) specifies a communication of a
value of type t through the unbuffered channel from p to q; (closecloseclose p q) specifies
closing of the channel from p to q; (catcatcat S1 . . . Sn) and (parparpar S1 . . . Sn) spec-
ify concatenation (i.e., sequential composition) and interleaving (i.e., parallel
composition).1,2 Additional features will be presented in the next subsections.
Because discourje is built on top of Clojure/Java, we can also use a few Clo-
jure/Java features to write specifications (e.g., “colon-prefixed” identifiers from
Clojure and data types from Java).

Thus: lines 5–9 specify communications of a String (book) from :buyer1 to
:seller, an Integer (quote) from :seller to :buyer1 and :buyer2, an Integer

(contribution) from :buyer1 to :buyer2, and a Boolean (accept/reject) from
:buyer2 to :seller; lines 10–12 specify closings of all channels, in no particular
order.

1Opening of channels is currently not part of the specification language; an extension along the
lines of Hu and Yoshida [28] is possible, though.

2We note that channels are referred to in specifications through the intended sender and receiver
instead of through a separate channel identity. The advantage is that it makes specifications easier
to write and understand (higher level of abstraction); the disadvantage is that multiple channels
between the same two threads, in the same direction, are indistinguishable in specifications.

Springer Nature 2021 LATEX template

The Discourje Project 9

3.5a (defdefdef m (monitormonitormonitor (sessionsessionsession :two-buyer)))
3.5b (linklinklink c1 :buyer1 :buyer2 m) (linklinklink c2 :buyer1 :seller m)
3.5c (linklinklink c3 :buyer2 :buyer1 m) (linklinklink c4 :buyer2 :seller m)
3.5d (linklinklink c5 :seller :buyer1 m) (linklinklink c6 :seller :buyer2 m)

Fig. 7: Adding a monitor and instrumentation to the implementation in Fig. 6,
using the specification in Fig. 5

Next, we write the implementation in Fig. 6. Lines 1–3 implement the
channels, while lines 4–24 implement the threads. In general (Fig. 3), (>!!>!!>!! c v)

sends v through c, (<!!<!!<!! c) receives a value through c, and (close!close!close! c) closes c.
Thus, the quote of :seller is 19 (variable x at :buyer1 and :buyer2); the

contribution of :buyer1 is half of the quote (variable y at :buyer2), and the
decision of :buyer2 is to reject (variable z).

Next, we run the implementation with the specification. To do this, we
first need to add the lines in Fig. 7 between lines 3–4 in Fig. 6. That is, we create
a monitor for the specification in Fig. 5 and link it to every channel, along
with the intended sender and the intended receiver. Furthermore, we need to
load discourje.core.async instead of clojure.core.async. Besides these little
changes, no other changes are needed: notably, the code for :buyer1, :buyer2,
and :seller in Fig. 6 stays exactly the same. This demonstrates that discourje
is non-invasive to start using.

Next, we observe an exception:

[SESSION FAILURE] Action ?!(19/2,buyer1,buyer2) is not enabled in current state(s): [3].
LTS in Aldebaran format:

des (0,4,5)
(0,"?!(String,buyer1,seller)",1)
(1,"?!(Integer,seller,buyer1)",2)
(2,"?!(Integer,seller,buyer2)",3)
(3,"?!(Integer,buyer1,buyer2)",4)
*** state 4 not yet expanded ***

The first two lines report that the implementation of :buyer1 attempts to send
value 19/2 to :buyer2, but that this is not allowed in the specification’s current
state 3. The remaining lines show the relevant part of the state space of the
specification, as a list of transitions. By matching the unsafe action reported on
the first line, ?!(19/2,buyer1,buyer2), against the label of the transition out of
current state 3, ?!(Integer,buyer1,buyer2), we can infer that a communication
from :buyer1 to :buyer2 is actually allowed, but that the type of the value
must be Integer, which 19/2 is not; it is a Ratio value that we forgot to round
down. Thus, “clearly”, the problem is a bug in the implementation.

Next, we fix the bug by replacing (/ x 2) on line 7 in Fig. 6 with
(int (/ x 2)), to round the Ratio down to an Integer.

Next, we re-run the implementation with the specification.

Next, we observe another exception:

Springer Nature 2021 LATEX template

10 The Discourje Project

?!(String,buyer1,seller)
?!(Integer,seller,buyer1)
?!(Integer,seller,buyer2)
?!(Integer,buyer1,buyer2)
?!(Boolean,buyer2,seller)
C(buyer2,buyer1)

Fig. 8: A channel is closed, but never
used.

?!(String,buyer1,seller)
?!(Integer,seller,buyer1)
?!(Integer,seller,buyer2)
?!(Integer,buyer1,buyer2)
?!(Boolean,buyer2,seller)
C(buyer1,buyer2)

Fig. 9: Causally unrelated actions are
strictly ordered.

[SESSION FAILURE] Action C(buyer1,buyer2) is not enabled in current state(s): [4]. LTS in
Aldebaran format:

des (0,5,6)
(0,"?!(String,buyer1,seller)",1)
(1,"?!(Integer,seller,buyer1)",2)
(2,"?!(Integer,seller,buyer2)",3)
(3,"?!(Integer,buyer1,buyer2)",4)
(4,"?!(Boolean,buyer2,seller)",5)
*** state 5 not yet expanded ***

By matching the unsafe action reported on the first line, C(buyer1,buyer2),
against the label of the transition out of current state 4, ?!(Boolean,buyer2,

seller), we can infer that the implementation of :buyer1 attempts to close
its channel to :buyer2, but that the specification allows only a communication
from :buyer2 to :seller at this point. Thus, there seems to be a timing issue
with :buyer1’s closing. This is not “clearly” a bug in the implementation: the
specification prescribes all closings to happen at the end (Fig. 5, lines 10–12),
and indeed, every thread closes its channels at the end of its run (Fig. 6, lines
9–10, 16–17, 23–24), so what goes wrong?

Next, we check the specification using discourje’s built-in model checker,
by having it automatically perform seven generic sanity checks: three checks
pertain to termination (the protocol must always terminate; it may always
terminate; it can never terminate), three checks pertain to closings (if a channel
is used, it must be closed; if a channel is closed, it must have been used; if a
channel is closed, it cannot be used again), and one check pertains to causality
(clarified below).

Next, the model checker reports three issues. The first issue is that the
specification cannot never terminate. This is intended, so we can immediately
ignore it (and disable the check). The second issue is that, apparently, one of
the channels can be closed before it is used.

To help debugging, the model checker provides the witness in Fig. 8 (i.e., a
violating sequence of actions). It clarifies that after five communications, the
specification allows :buyer2 to close its channel to :buyer1, but actually, that
channel is never used. While this is not a bug per se, it is “smelly” (cf. dead
code and unused variables).

Next, we remove (closecloseclose :buyer2 :buyer1) from line 11 in Fig. 5, and also
(defdefdef c3 (chanchanchan)) and (close!close!close! c3) from lines 2 and 16 in Fig. 6.

Springer Nature 2021 LATEX template

The Discourje Project 11

Next, we re-check the specification using the model checker.

Next, only the third issue remains reported: at some point, apparently,
two causally unrelated actions are allowed to happen in one order, but not in
the other order. This can be problematic, because in the absence of a causal
relation between the actions, it is impossible to write an implementation that
fulfils one order but not the other, unless “covert interaction” is used (i.e.,
synchronisation or communication outside the specification).

To help debugging, the model checker provides the witness in Fig. 9. It
clarifies that after five communications, the specification allows :buyer1 to
close its channel to :buyer2, but it forbids :buyer1 to do so before :buyer2 and
:seller have communicated (penultimate action of the witness). However, as
a non-participant in that communication, :buyer1 cannot know when :buyer2

and :seller are done (i.e., no causality), so the specification cannot be fulfilled;
this is a specification bug.

Next, we fix the bug by observing that the specification is too restrictive:
it requires all channels to be closed at the end, but since :buyer1’s part in
the protocol is already done at line 8 in Fig. 5, the specification should allow
:buyer1 to close its channels from that point onwards. We therefore replace
lines 9–12 with the following:

9 (parparpar (-->-->--> Boolean :buyer2 :seller)
10 (closecloseclose :buyer1 :buyer2) (closecloseclose :buyer1 :seller))
11 (parparpar (closecloseclose :buyer2 :buyer1) (closecloseclose :buyer2 :seller)
12 (closecloseclose :seller :buyer1) (closecloseclose :seller :buyer2))))

(The closing of the unused channel from :buyer2 to :buyer1 was removed in a
previous step.) Thus, by judiciously introducing a new parparpar-block, the specifica-
tion now allows :buyer1 to close its channels in parallel to the communication
from :buyer2 to :seller.

Next, we re-check the specification using the model checker.

Next, another causality issue is reported. The last two actions of the
witness are C(buyer1,seller) and C(buyer2,seller). Thus, the specification
allows :buyer1 and :buyer2 to close their channels to :seller in that order,
but not in the reverse order; since :buyer2 cannot know when :buyer1 is done,
this is a specification bug.

Next, we fix the bug by observing that the updated specification is still
too restrictive: it unnecessarily requires :buyer1 to close its channels before
:buyer2 and :seller can close theirs. We therefore refine lines 9–12 with
another parparpar-block, as follows:

9 (parparpar (catcatcat (-->-->--> Boolean :buyer2 :seller)
10 (parparpar (closecloseclose :buyer2 :buyer1) (closecloseclose :buyer2 :seller)
11 (closecloseclose :seller :buyer1) (closecloseclose :seller :buyer2)))
12 (closecloseclose :buyer1 :buyer2) (closecloseclose :buyer1 :seller))

Next, we re-check the specification using the model checker.

Next, no more issues are reported.

Springer Nature 2021 LATEX template

12 The Discourje Project

1 (defroledefroledefrole :alice)
2 (defroledefroledefrole :bob)
3

4 (defsessiondefsessiondefsession :ttt []
5 (altaltalt (:ttt-turn :alice :bob)
6 (:ttt-turn :bob :alice)))

7 (defsessiondefsessiondefsession :ttt-turn [r1 r2]
8 (catcatcat (-->>-->>-->> Long r1 r2)
9 (altaltalt (:ttt-turn r2 r1)

10 (parparpar (closecloseclose r1 r2)
11 (closecloseclose r2 r1)))))

Fig. 10: Specification of the Tic–Tac–Toe program

Next, we re-run the implementation with the specification.

At last, no more exceptions are reported. Thus, in several iterations, we
detected and fixed bugs in both the implementation and the specification. We
note that lines 9–12 of the final specification reveal intricate timing constraints.
On the one hand, as a result, the specification is not easy to write, which may
discourage potential users. On the other hand, the intricate timing constraints
exist regardless of whether a specification is written; this can make writing the
specification, and subsequently enjoying the benefits of run-time verification,
all the more valuable. The model checker is, however, important to assist in
getting the specification right.

Having demonstrated the intended workflow of discourje, we proceed with
three case studies to systematically present the features and expressiveness of
the Discourje approach (Sect. 1.1.2, Fig. 1)

3.2 Case Study: Tic–Tac–Toe

3.2.1 Preface

Our first case study is a program that simulates a game of Tic–Tac–Toe.3 It
consists of two threads and two 1-capacity buffered channels through which
they communicate. The threads take turns to make plays on thread-local copies
of the grid; at the end of its turn, the active thread sends its play to the other
thread and becomes passive, while the other thread receives the play, becomes
active, updates its copy of the grid accordingly, and makes the next play. This
case study demonstrates the following features:

• Specification: roles; asynchronous communication through buffered chan-
nels; closings; concatenation (sequential composition); choice; interleaving
(parallel composition); role-based parametrisation.

• Implementation: channels; sends; receives; closings.

3.2.2 Specification

A specification of the Tic–Tac–Toe program is shown in Fig. 10. Lines 1-2
specify two roles (defroledefroledefrole), identified by :alice and :bob. Lines 4–11 specify

3Tic–Tac–Toe is a two-player game played on a 3x3 grid. Each player is assigned its own symbol:
a cross (“X”) or a nought (“O”). Players take turns to fill the initially blank spaces of the grid
with their assigned symbol. The first player to fill three consecutive spaces, in any direction, wins.

Springer Nature 2021 LATEX template

The Discourje Project 13

two protocols (defsessiondefsessiondefsession), identified by :ttt (zero formal parameters) and
:ttt-turn (two formal parameters for roles, identified by r1 and r2).

Specification :ttt-turn represents one turn of r1 (active player) against r2

(passive player). It specifies a concatenation (catcatcat):

1. First, a value of type Long is communicated through a buffered chan-
nel from r1 to r2 (-->>-->>-->>; we recall that -->-->--> is used to specify unbuffered
communications). The idea is that r1 sends its play this turn to r2.

2. Next, there is a choice (altaltalt):

(a) Either, there is another instance of :ttt-turn, but now with r2 as active
player and r1 as passive player. The idea is that r1 did not win or draw
this turn, so the game continues.

(b) Or, channels are closed (closecloseclose), in parallel (parparpar). The idea is that r1 did
win or draw this turn, so the game ends.
The closings may happen in any order; this is important, as neither one of
the closings is causally related to the other (i.e., in the implementation,
covert interaction would be needed to order them).

Specification :ttt represents the whole game. It specifies a choice between
either an initial instance of :ttt-turn with actual parameters :alice and
:bob, or :bob and :alice, depending on who takes the first turn. Thus, at the
specification level, it is undecided who goes first (implementation detail).

Since concatenation, choice, and recursion are supported in discourje, any
regular expression (over communications and closes) can be written. However,
for convenience, shorthands are available for the following patterns: 0-or-more
repetitions (***), 1-or-more (+++), and 0-or-1 (???). Thus, the programmer never
needs to use explicit recursion to write regular expressions.

3.2.3 Implementation

An implementation of the Tic–Tac–Toe program is shown in Fig. 11.
Lines 1–9 define constants (blank, cross, nought, initial-grid) and functions
(get-blank, put, not-final?) to represent Tic–Tac–Toe concepts. Lines 11-12
define buffered channels of capacity 1 (a->b and b->a) that implement the
network through which the threads communicate.

Lines 14–24 and 25–35 define threads that implement roles :alice and
:bob. Both threads execute a loop, starting with a blank initial grid. In each
iteration, :alice first gets the index of a blank space on the grid, then plays a
cross in that space, then sends a value to :bob to communicate the index, then
awaits a value from :bob, and then updates the grid accordingly; :bob acts
symmetrically. After every grid update, :alice or :bob checks if it has reached
a final grid; if so, the loop is exited and channels are closed.4

4Many data structures in Clojure—including the vector that implements the grid—are persis-
tent and, thus, effectively immutable: every operation on an old data structure leaves it unmodified
and, instead, returns a new data structure. In concurrent programs, including Tic–Tac–Toe, per-
sistent data structures can be used as thread-local copies of data, but modifications need to

Springer Nature 2021 LATEX template

14 The Discourje Project

1 (defdefdef blank " ") (defdefdef cross "x") (defdefdef nought "o")
2

3 (defdefdef initial-grid [blank blank blank ;; an initial 3x3 grid of blank spaces,
4 blank blank blank ;; implemented as a vector of length 9
5 blank blank blank]) ;; (persistent data structure)
6

7 (defdefdef get-blank (fnfnfn [g] ...)) ;; returns a blank space in g
8 (defdefdef put (fnfnfn [g i x-or-o] ...)) ;; returns g, but with i set to x-or-o
9 (defdefdef not-final? (fnfnfn [g] ...)) ;; returns true iff g is not final

10

11 (defdefdef a->b (chanchanchan 1)) (defdefdef b<-a a->b) ;; b<-a is an alias of a->b
12 (defdefdef b->a (chanchanchan 1)) (defdefdef a<-b b->a) ;; a<-b is an alias of b->a
13

14 (threadthreadthread ;; :alice
15 (looplooploop [g initial-grid]
16 (letletlet [i (get-blank g)
17 g (put g i cross)]
18 (>!!>!!>!! a->b i)
19 (ififif (not-final? g)
20 (letletlet [i (<!!<!!<!! a<-b)
21 g (put g i nought)]
22 (ififif (not-final? g)
23 (recurrecurrecur g))))))
24 (close!close!close! a->b))

25 (threadthreadthread ;; :bob
26 (looplooploop [g initial-grid]
27 (letletlet [i (<!!<!!<!! b<-a)
28 g (put g i cross)]
29 (ififif (not-final? g)
30 (letletlet [i (get-blank g)
31 g (put g i nought)]
32 (>!!>!!>!! b->a i)
33 (ififif (not-final? g)
34 (recurrecurrecur g))))))
35 (close!close!close! b->a))

Fig. 11: Implementation of the Tic–Tac–Toe program

A monitor and instrumentation can be added to the implementation in the
same way as shown in Fig. 7. Interestingly, in this case study, the implemen-
tation is actually unsafe relative to the specification: the specification states
that channels are allowed to be closed only after (the receive of) the previous
communication is done, but in the implementation, :alice or :bob can attempt
to close already before. There are several ways to fix this bug. One solution
is to use unbuffered channels instead of buffered ones. Another solution is
to mix channels with a synchronisation barrier from Java’s standard library
java.util.concurrent (readily usable in Clojure), to let :alice and :bob first
await each other and then close (i.e., covert interaction). The next case study
further demonstrates the latter idea.

3.3 Rock–Paper–Scissors

Our second case study is a program that simulates a game of Rock–Paper–
Scissors.5 The program consists of k threads and k2−k directed channels from
every thread to every other thread. In every round, every thread chooses an
item—rock, paper, or scissors—and sends it to every other thread; then, when
all items have been received, every thread determines if it goes to the next
round. This case study demonstrates the following features:

be explicitly communicated. Persistence also means that data races cannot happen: if threads
communicate only persistent data structures, freedom of data races is guaranteed.

5Rock–Paper–Scissors is a multiplayer game played in rounds. In every round, every remaining
player chooses an item—rock, paper, or scissors—and reveals it. A player goes to the next round,
unless some other player defeats them, while they defeat no other player, based on the chosen
items in the current round (“scissors cuts paper, paper covers rock, rock crushes scissors”). The
last player to remain wins.

Springer Nature 2021 LATEX template

The Discourje Project 15

1 (defroledefroledefrole :player)
2

3 (defsessiondefsessiondefsession :rps [ids]
4 (:rps-round ids empty-set))
5

6 (defsessiondefsessiondefsession :rps-round [ids co-ids]
7 (ififif (> (count ids) 1)
8 (catcatcat (par-everypar-everypar-every [i ids
9 j (disj ids i)]

10 (-->-->--> String (:player i) (:player j)))
11 (alt-everyalt-everyalt-every [winner-ids (power-set ids)]
12 (letletlet [loser-ids (difference ids winner-ids)]
13 (parparpar (:rps-round winner-ids (union co-ids loser-ids))
14 (par-everypar-everypar-every [i loser-ids
15 j (disj (union ids co-ids) i)]
16 (closecloseclose (:player i) (:player j)))))))))

Fig. 12: Specification of the Rock–Paper–Scissors program

• Specification: indexed roles; synchronous communication through un-
buffered channels; conditional choice; local bindings; existential and un-
ordered-universal quantification; index-based parameters; set operations;
implicit non-determinism.

• Implementation: selection; covert interaction (synchronisation barrier).

3.3.1 Specification.

A specification of Rock–Paper–Scissors is shown in Fig. 12; auxiliary
discourje functions are typeset in font. Line 1 specifies one role, identified
by :player. Lines 3–16 specify two protocols, identified by :rps (one formal
parameter for role indices) and :rps-round (two formal parameters). There are
two key differences with Fig. 10 in Sect. 3.2:

• Whereas roles :alice and :bob in Tic–Tac–Toe are enacted each by a single
thread, role :player in Rock–Paper–Scissors is enacted by multiple threads.
To distinguish between different threads that enact the same role, roles can
be indexed. For instance, with 0-based indexing, (:player 5) represents the
thread that implements the sixth player.

• Whereas formal parameters of specification :ttt-turn in Tic–Tac–Toe range
over roles, those of specifications :rps and :rps-round range over (sets of)
role indices.

Specification :rps-round represents one round of the game; threads indexed
by elements in set ids are still in, while threads indexed by elements in set
co-ids are already out. When at least two threads are still in (ififif), :rps-round
specifies a concatenation:

1. First, there is an unordered-universal quantification (par-everypar-everypar-every) of local
variable i over domain ids, and simultaneously, local variable j over domain
“ids without i” (disj). In general, an unordered-universal quantification
gives rise to a “big parallel” of branches, each of which is formed by binding

Springer Nature 2021 LATEX template

16 The Discourje Project

values in the domains to local variables (cf. parallel for-loops). In this par-
ticular example, every such branch specifies a communication of a value of
type String through an unbuffered channel from (:player i) to (:player j)

(-->-->-->). The idea is that every (:player i) sends its chosen item to every
other in-game (:player j), in no particular order (implementation detail).

2. Next, there is an existential quantification (alt-everyalt-everyalt-every) of local variable
winner-ids over domain “set of subsets of ids” (power-set). Similar to
unordered-universal quantification, in general, existential quantification
gives rise to a “big choice” of branches. In this particular example, every
such branch specifies a binding (letletlet) of local variable loser-ids to “ids
without winner-ids” (difference), after which:

• There is another instance of :rps-round, but now with only winner-ids

retained from ids, and with loser-ids added to co-ids (union). The idea
is that only every (:player i) that is a winner this round goes to the
next round.

• Concurrently, there is an unordered-universal quantification of i over
loser-ids, and simultaneously, j over “all indices except i”. Every branch
of this “big parallel” specifies the closing of the channel from (:player i)

to (player j). The idea is that every (:player i) that is a loser this round
closes its channel to every other (:player j).

Thus, the idea of the existential quantification is, for every possible subset
of winners, that the winners stay in the game, while the losers go out.
We note that the usage of existential quantification in this way makes the
specification implicitly non-deterministic: different branches may start with
the exact same (sequence of) channel action(s), until a “distinguishing”
channel action happens. This requires non-trivial bookkeeping to support.

Specification :rps represents the whole game. It specifies an initial instance
of :rps-round, when all threads are in, and no threads are out (empty-set).

In addition to existential quantification and unordered-universal quantifi-
cation, there is also support for ordered-universal quantification (cat-everycat-everycat-every):
similar to the former two, the latter one gives rise to a “big concatenation” of
branches (cf. sequential for-loops). We also note that the syntax and seman-
tics of the functions for operations on sets are the same as those in standard
library clojure.set, to make discourje easy to learn.

3.3.2 Implementation

An implementation of the Rock–Paper–Scissors program is shown in
Fig. 13; auxiliary discourje functions are typeset in font; shading indicates
external Java calls for covert interaction.

Line 1 defines a constant for the number of threads k. Lines 3–7 define
constants and functions to represent Rock–Paper–Scissors concepts. Line 9
defines a collection of k2−k unbuffered channels that implement the network,
intended to be used as a fully connected mesh; the threads are represented

Springer Nature 2021 LATEX template

The Discourje Project 17

1 (defdefdef k ...) ;; number of threads (e.g., read from stdin)
2

3 (defdefdef rock "rock") (defdefdef paper "paper") (defdefdef scissors "scissors") ;; items
4

5 (defdefdef rock-or-paper-or-scissors (fnfnfn [] ...)) ;; returns an item
6 (defdefdef winner-ids (fnfnfn [r] ...)) ;; returns winners in round r
7 (defdefdef winner-or-loser? (fnfnfn [r i] ...)) ;; returns true iff thread i is
8 ;; winner or loser in round r
9 (defdefdef chans (mesh chanchanchan (range k)))

10 (defdefdef barrier (java.util.concurrent.Phaser. k))
11

12 (doseq [i (range k)]
13 (threadthreadthread ;; (:player i)
14 (looplooploop [ids (range k)]
15 (letletlet [item (rock-or-paper-or-scissors)
16 opponent-ids (remove #{i} ids)
17 round (looplooploop [acts (into (puts chans [i item] opponent-ids)
18 (takes chans opponent-ids i))
19 round {}] ;; map from ids to items (initially empty)
20 (ififif (empty? acts)
21 (assoc round i item)
22 (letletlet [[v c] (alts!!alts!!alts!! acts)]
23 (recurrecurrecur (remove #{[c item] c} acts)
24 (assoc round (putter-id chans c) v)))))]
25 (.arriveAndAwaitAdvance barrier)
26 (ififif (winner-or-loser? round i)
27 (dododo (.arriveAndDeregister barrier)
28 (doseq [j (remove #i (range k))]
29 (close!close!close! (chans i j))))
30 (recurrecurrecur (winner-ids round)))))))

Fig. 13: Implementation of the Rock–Paper–Scissors program

by indices in the range from 0 to k (exclusive). We note that mesh is an aux-
iliary discourje function to simplify defining collections of channels; just as
the other auxiliary discourje functions used in Fig. 13, it works also without
adding a monitor or instrumentation. Line 10 defines a reusable synchronisa-
tion barrier, imported from standard library java.util.concurrent, leveraging
Clojure’s interoperability with Java; shortly, we clarify the need for this.

Lines 12–30 define k copies of a thread that implements role :player. Every
such thread executes two parametrised loops: an outer one, each of whose iter-
ations comprises a round, and an inner one, each of whose iterations comprises
a channel action. We clarify the following aspects:

• According to the specification (Fig. 12), in the first half of every round
(lines 8–10), the items that are chosen by in-game threads are communicated
among them. This is potentially problematic: as channels are unbuffered,
sends and receives are blocking until reciprocal channel actions are per-
formed, so unless threads collectively agree on a global order to perform
reciprocal channel actions, deadlocks may occur. However, such global orders
are hard to get right and brittle to maintain.
An alternative solution is to use selections: in general, a selection consumes
a list of channel actions as input, then blocks until one of those actions
becomes enabled, then performs that action, then unblocks, and then pro-
duces that action’s output as output. Thus, a selection performs one channel
action from a list, depending on its enabledness at run-time.

Springer Nature 2021 LATEX template

18 The Discourje Project

In this particular example, instead of performing globally ordered reciprocal
sends and receives, every thread performs a series of selections (alts!!alts!!alts!!) in the
inner loop (Fig. 13, lines 17–24). Initially, the list of channel actions consists
of all sends (puts) and receives (takes) that a thread needs to perform in a
round. When a selection finishes, the channel action that was performed is
removed from the list, and the inner loop continues. Because every thread
behaves in this way, reciprocal channel actions will always be enabled.

• According to the specification (Fig. 12), there is a strict order between the
first half of every round (lines 8–10) and the second half (lines 11–16): all
channel actions that belong to the first half need to have happened before
proceeding to the second half. This is potentially problematic: additional
synchronisation is needed to ensure that “fast threads”—those that perform
their channel actions early—wait for “slow threads” to catch up.
To solve this, in this case study, we mix channels with a synchronisation bar-
rier from java.util.concurrent (shaded code in Fig. 13). This demonstrates
that channel-based programming abstractions (verified using discourje) can
be mixed seamlessly with other concurrency libraries (not verified), which
is common practice [6, 41].

A monitor and instrumentation can be added to the implementation in the
same way as shown in Fig. 7. In this case study, the implementation is safe
relative to the specification.

3.4 Go Fish

Our third case study is a program that simulates a game of Go Fish.6 The Go
Fish program consists of k+1 threads (players, plus dealer), and k2+k chan-
nels from every thread to every other thread; unlike the Rock–Paper–Scissors
program, however, all interactions among threads happen through channels
(no covert interaction). This example demonstrates the following features:

• Specification: user-defined data types; repetition; ordered-universal quan-
tification; explicit non-determinism.

• Implementation: data type-based control flow.

3.4.1 Specification

A specification of Go Fish is shown in Fig. 14. Line 1 defines two roles, iden-
tified by :dealer (enacted by a single thread) and :player (multiple threads).
Lines 3–29 define two protocols, identified by :gf and :gf-turn. Lines 30–35
define six user-defined data types.

6Go Fish is a multiplayer game played with a standard 52-card deck. A dealer shuffles the deck
and deals an initial hand to every player. Next, players take turns to collect groups of cards of
the same rank. Every turn, the active player asks a passive player for a card. If the asked player
has it, the asking player gets it and takes another turn; if not, the asked player tells the asking
player (“go”), the asking player gets a card from the dealer (“fish”), and the turn is passed to the
asked player. The first player to hold only complete groups wins. (This version of Go Fish is due
to Parlett [42].)

Springer Nature 2021 LATEX template

The Discourje Project 19

1 (defroledefroledefrole :dealer) (defroledefroledefrole :player)
2

3 (defsessiondefsessiondefsession :gf [ids]
4 (catcatcat (par-everypar-everypar-every [i ids]
5 (cat-everycat-everycat-every [_ (range 5)]
6 (-->-->--> Card :dealer (:player i))))
7 (alt-everyalt-everyalt-every [i ids]
8 (catcatcat (-->-->--> Turn :dealer (:player i))
9 (:gf-turn i ids)))

10 (par-everypar-everypar-every [i ids]
11 (catcatcat (closecloseclose :dealer (:player i))
12 (parparpar (catcatcat (*** (-->-->--> Card (:player i) :dealer))
13 (closecloseclose (:player i) :dealer))
14 (par-everypar-everypar-every [j (disj ids i)]
15 (closecloseclose (:player i) (:player j))))))))
16

17 (defsessiondefsessiondefsession :gf-turn [i ids]
18 (alt-everyalt-everyalt-every [j (disj ids i)]
19 (catcatcat (-->-->--> Ask (:player i) (:player j))
20 (altaltalt (catcatcat (-->-->--> Card (:player j) (:player i))
21 (-->-->--> OutOfCards (:player i) :dealer))
22 (catcatcat (-->-->--> Card (:player j) (:player i))
23 (:gf-turn i ids))
24 (catcatcat (-->-->--> Go (:player j) (:player i))
25 (-->-->--> Fish (:player i) :dealer)
26 (altaltalt (-->-->--> Card :dealer (:player i))
27 (-->-->--> OutOfCards :dealer (:player i)))
28 (-->-->--> Turn (:player i) (:player j))
29 (:gf-turn j ids))))))

30 (defrecorddefrecorddefrecord Turn [])
31 (defrecorddefrecorddefrecord Ask [suit rank])
32 (defrecorddefrecorddefrecord Card [suit rank])
33 (defrecorddefrecorddefrecord OutOfCards [])
34 (defrecorddefrecorddefrecord Go [])
35 (defrecorddefrecorddefrecord Fish [])

Fig. 14: Specification of the Go Fish program, including data types

Specification :gf-turn represents one turn of (:player i). It specifies a
“big choice”. In every branch, the idea is as follows. First, (:player i) asks
(:player j) for some card. Next, there is a choice:

1. (:player j) replies with the card that it was asked for, which happens to
be the last card that (:player i) needed (to complete its last group), so it
informs (:dealer), and the game ends.

2. Or, (:player j) replies with the card that it was asked for, which does not
happen to be the last card that (:player i) needed, so (:player i) takes
another turn, and the game continues.
We note that the specification is explicitly non-deterministic: the first
branch and the second branch both start with the same channel action.

3. Or, (:player j) does not reply with the card that it was asked for, so
(:player i) tries to “fish” a card from :dealer, after which (:player i)

passes the turn to (:player j), and the game continues.

Specification :gf represents the whole game. It specifies a concatenation:

1. First, there is a “big parallel”. The idea is that :dealer deals every player
an initial hand of five cards, in no particular order (implementation detail).

2. Next, there is a “big choice”. The idea is that :dealer passes the first turn
to one of the players (implementation detail). During the game, the players
pass the turn among themselves without involving :dealer.

Springer Nature 2021 LATEX template

20 The Discourje Project

1 (doseq [i (range k)]
2 (threadthreadthread ;; for (:player i)
3 (... (letletlet [[v c] (alts!!alts!!alts!! ...)]
4 (condp = (type v)
5 Turn (... (letletlet [v (<!!<!!<!! ...)]
6 (condp = (type v)
7 Card ...
8 Go ...))) ;; another <!! and condp in this case
9 Ask ...

10 nil ...)))))

11 (threadthreadthread ...) ;; for :dealer

Fig. 15: Implementation of the Go Fish program

3. Next, there is a “big parallel”. The idea is that the game has ended at this
point, so :dealer closes its channel to every (:player i), in no particular
order (implementation detail), after which every (:player i) sends its hand
back to :dealer through the oppositely directed channel, closes that chan-
nel, and closes its channel to every other (:player j), in no particular order
(implementation detail).

3.4.2 Implementation

An implementation of Go Fish is shown in Fig. 15 (excerpt; many details
are left out to save space). To demonstrate that discourje supports data
type-based control flow, Fig. 15 shows fragments of code where values are
received—directly with <!!<!!<!! and indirectly with alts!!alts!!alts!!—by threads that enact
role :player. Specifically:

• On line 3, alts!!alts!!alts!! is used to receive a value v from another :player or
from :dealer. This value is either of type Turn/Ask (received from another
:player), or nil (“received” from :dealer).
We note that a “receive” of nil happens only, and automatically, when the
channel from :dealer to (:player i) is closed. Such a degenerate “receive”
is used by (:player i) to detect that the game has ended.

• On line 5, <!!<!!<!! is used to receive a value of type Card or Go from (:player j),
to which a value of type Ask must have been sent previously (not shown).

A monitor and instrumentation can be added to the implementation in the
same way as shown in Fig. 7. In this case study, the implementation is safe
relative to the specification.

4 Theory of discourje

The discourje library is built on a formal foundation, inspired by process alge-
bra (e.g., [43]) and multiparty session types (e.g., [16, 17]). This underlying
theory consists of a calculus of specifications (Sect. 4.1), a calculus of imple-
mentations (Sect. 4.2), and a simulation relation (Sect. 4.3). The aim of this
section is to explain the general idea without excessive notation; in the interest

Springer Nature 2021 LATEX template

The Discourje Project 21

1 ↓
[S↓-Skip]

Si∈{1,2} ↓
S1 + S2 ↓

[S↓-Alt]
S1 ↓ S2 ↓
S1 · S2 ↓

[S↓-Seq]
S1 ↓ S2 ↓
S1 ‖ S2 ↓

[S↓-Par]

(a) Termination

p_q :t
pq!?t−−−→ 1

[S→-Unbuf]
p__q :t

pq!t−−−→ pq?t
pq?t−−−→ 1

[S→-Buf]
pq• pq•−−→ 1

[S→-Close]

Si∈{1,2}
σ−→ S

′

S1 + S2
σ−→ S

′ [S→-Alt]
S1

σ−→ S
′
1

S1 · S2
σ−→ S

′
1 · S2

[S→-Seq1]
S1 ↓ S2

σ−→ S
′
2

S1 · S2
σ−→ S

′
2

[S→-Seq2]

S1
σ−→ S

′
1

S1 ‖ S2
σ−→ S

′
1 ‖ S2

[S→-Par1]
S2

σ−→ S
′
2

S1 ‖ S2
σ−→ S1 ‖ S′2

[S→-Par2]

(b) Reduction

Fig. 16: Operational semantics of specifications

of clarity, we therefore focus on the basic fragments of discourje and Clo-
jure. These fragments consist of channel actions (sends, receives, closings, and
selects), choice, and concatenation.

4.1 Specification Calculus

Let R denote the set of roles, ranged over by p, q, r. Let T = {Bool, Nat, . . .}
denote the set of types, ranged over by t. Let S denote the set of specifications,
ranged over by S; it is induced by the following grammar:

S ::= 1
∣∣ p_q :t︸ ︷︷ ︸

-->-->-->

∣∣ p__q :t︸ ︷︷ ︸
-->>-->>-->>

∣∣ pq?t
∣∣ pq•︸︷︷︸
closecloseclose

∣∣ S1 + S2︸ ︷︷ ︸
altaltalt

∣∣ S1 · S2︸ ︷︷ ︸
catcatcat

∣∣ S1 ‖ S2︸ ︷︷ ︸
parparpar

Term p_q :t specifies a synchronous communication of a value of type t
through an unbuffered channel from p to q. Term p__q specifies an asyn-
chronous communication of a value of type t through a buffered channel from
p to q; the capacity of the buffer is left unspecified (implementation detail).
Term pq• specifies a closing of a channel from p to q. Terms S1 + S2, S1 · S2,
and S1 ‖ S2 specify a choice (i.e., alternative composition), a concatenation
(i.e., sequential composition), and an interleaving (i.e., parallel composition)
of S1 and S2. The “boxed” terms (i.e., 1 and pq?t; the boxes are not part of
the grammar), are auxiliary in the sense that they are used only to define the
operational semantics below; there are no corresponding discourje macros.
Term 1 specifies a skip; it can only terminate. Term pq?t specifies the asyn-
chronous receive of a value of type t through a buffered channel from p to q
(when a send has already happened).

To formally define the operational semantics of specifications, let Σ denote
the set of type-level actions, ranged over by σ; it is induced by the following
grammar:

σ ::= pq!?t | pq!t | pq?t | pq•

Springer Nature 2021 LATEX template

22 The Discourje Project

Term pq!?t specifies a synchronous send and receive of a value of type t through
an unbuffered channel from p to q. Terms pq!t and pq?t specify an asynchronous
send and receive of a value of type t through a buffered channel from p to q.
Term pq• specifies a closing of a channel from p to q.

The operational semantics of specifications is formally defined in terms of
a termination predicate and a labelled reduction relation, denoted by ↓ and
→; they are induced by the rules in Fig. 16. The rules are standard in process
algebra (e.g., [44]). We note that rule [S→-Buf] induces two reductions.

The state machine JSK of specification S is a triple (Q, q0,∆), where Q is
a set of states, q0 ∈ Q is the initial state, and ∆ ⊆ Q × Q is the transition
relation. Formally, Q is induced by the following rules:

(⊥, S) ∈ Q
(σ, S′) ∈ Q S′

σ′−→ S′′

(σ′, S′′) ∈ Q

Furthermore, q0 = (⊥, S) and ∆ = {((ς, S′), (σ′, S′′)) | S′ σ′−→ S′′}, where ς
ranges over Σ∪{⊥}. Thus, in state machines, states instead of transitions are
labelled by actions (cf. Kripke structures). A path in a state machine M =
(Q, q0,∆) is a sequence of states q1 · · · qn, such that (qi, qi+1) ∈ ∆ for every
1 ≤ i < n, and such that (qn, q

′) /∈ ∆ for every q′ ∈ Q; let paths(M, q) denote
the set of all paths in M that start in q. (It suffices to restrict ourselves to finite
paths here, as our specification calculus does not feature loops/recursion.)

State machines can be used to model-check specifications for temporal
requirements expressed in computation tree logic (CTL) [45]. Let Φ denote the
set of formulas, ranged over by φ; it is induced by the following grammar:

φ ::= σ | ¬φ | φ1 ∨ φ2 | AX(φ) | EX(φ) | AU(φ1, φ2) | EU(φ1, φ2)

Formula σ means that σ has just happened in the current state. Formulas ¬φ
and φ1 ∨ φ2 means that the negation of φ and the disjunction of φ1 and φ2

are true in the current state. Formula AX(φ) and (resp. EX(φ)) mean that φ
is true in every (resp. some) next state. Formula AU(φ1, φ2) (resp. EU(φ1, φ2))
means that φ1 is true until φ2 is true on every (resp. some) path that starts in
the current state. We note that other common CTL operators (e.g., AF, EF,
AG, EG) can be encoded as usual in CTL.

The semantics of formulas is formally defined in terms of an entailment
relation, denoted by |=; it is induced by the rules in Fig. 17. The rules are
standard (e.g., [46]).

4.2 Implementation Calculus

Let X = {x, y, z, . . .} denote the set of variables, ranged over by x. Let C denote
the set of channel identifiers, ranged over by c. Let V = C ∪ {err, true, false,
0, 1, 2, . . .} denote the set of values, ranged over by v. Let E denote the set of

Springer Nature 2021 LATEX template

The Discourje Project 23

(M, (σ, S
′
)) |= σ

[Φ-Atom]
(M, q) 6|= φ

(M, q) |= ¬φ
[Φ-Not]

(M, q) |= φi∈{1,2}

(M, q) |= φ1 ∨ φ2
[Φ-Or]

(M, q
′
) |= φ for every (q, q

′
) ∈ ∆

(M, q) |= AX(φ)
[Φ-AllNext]

(M, q
′
) |= φ for some (q, q

′
) ∈ ∆

(M, q) |= EX(φ)
[Φ-ExistsNext]

(M, q1) |= φ1 and · · · and (M, qi−1) |= φ1 and (M, qi) |= φ2

for some 1 ≤ i ≤ n, for every q1 · · · qn ∈ paths(M, q)

(M, q) |= AU(φ1, φ2)
[Φ-AllUntil]

(M, q1) |= φ1 and · · · and (M, qi−1) |= φ1 and (M, qi) |= φ2

for some 1 ≤ i ≤ n, for some q1 · · · qn ∈ paths(M, q)

(M, q) |= EU(φ1, φ2)
[Φ-ExistsUntil]

Fig. 17: Semantics of CTL formulas, where M = (Q, q0,∆) is a state machine

expressions, ranged over by e; it is induced by the following grammar:

e ::= v | (= e1 e2) | (not e) | (or e1 e2) | (+ e1 e2) | · · ·

Let I denote the set of implementations, ranged over by I, J ; it is induced by
the following grammar:

I, J ::= (chan e x) .J | (send e1 e2) .J | (recv e x) .J |
∅ |

∑
I | if e I1 I2 | I1 ‖ I2

Term (chan e x) .J implements the creation of a channel of capacity e, followed
by J ; the channel identifier (freshly generated) is bound to x in J . Term
(send e1 e2) .J implements the send of e2 through the channel identified by
e1, followed by J . Term (recv e x) .J implements the receive of value through
the channel identified by e, followed by J ; the received value is bound to
x in J . Term ∅ implements emptiness; it can only terminate. Term

∑
I,

with I = {I1, . . . , In} for some I1, . . . , In, implements the non-deterministic
selection of alternatives in I. Term if e I1 I2 implements the conditional choice
of I1 and I2. Term I1 ‖ I2 implements the interleaving of I1 and I2 (i.e., parallel
composition).

To formally define the operational semantics of implementations, we
introduce the following auxiliary definitions:

• Let I denote the set of value-level actions, ranged over by ι; it is induced by
the following grammar:

ι ::= pq!?v | pq!v | pq?v | pq• | τ

Term pq!?v implements a synchronous send and receive of v through an
unbuffered channel from p to q. Terms pq!v and pq?v implement an asyn-
chronous send and receive of v through a buffered channel from p to q. Term

Springer Nature 2021 LATEX template

24 The Discourje Project

pq• implements a closing of a channel from p to q. Term τ implements any
other action. We will use value-level actions as reduction labels.

• Let -[-/-] : I×V×X→ I denote the substitution function for implementations
(i.e., I[v/x] denotes the substitution of v for every free occurrence of x in I).
For instance, ((chan (+ 5 x) y) .∅)[6/x] = (chan (+ 5 6) y) .∅. We will use
substitution to bind values to variables.

• Let eval : E → V denote the evaluation function for expressions (i.e.,
eval(e) denotes the evaluation of e). For instance, eval((+ 5 6)) = 11.
We stipulate that “bogus” expressions are evaluated to err. For instance,
eval((+ 5 true)) = err. We will use evaluation to ensure that only values are
communicated through channels.

• Let C→ ({>,⊥}×{0, 1, 2, . . .}×V∗)∪{⊥} denote the set of network states,
ranged over by N . In words, every network state is a partial function from
channel identifiers to channel states of the form (b, n, ~w), where b ∈ {>,⊥} is
the channel’s status (b=>means open; b=⊥means closed), n is the channel’s
capacity (n=0 means unbuffered; n>0 indicates buffered), and ~w ∈ V∗ is
the channel’s content as a list of buffered values that are in transit, from left
to right (~w=ε means empty). Regarding notation, we write N [c 7→ (b, n, ~w)]
instead of {c′ 7→ N(c′) | c′ ∈ C \ {c}} ∪ {c 7→ (b, n, ~w)}.

The operational semantics of implementations is formally defined in terms
of a labelled reduction relation, denoted by→, over configurations of the form
(I,N); it is induced by the rules in Fig. 18. In words:

• Rule [I-Chan] states that if c is fresh channel identifier (left premise), and
if the value of e represents n (right premise),7 then a channel identified by
c can be created in the network (conclusion).

• Rule [I-Send1] states that if c identifies an open channel (left premise), and
if the channel is buffered and non-full (right premise), then the value of e
can be asynchronously sent through the channel by enqueueing it to the
back of the buffer (conclusion). Rule [I-Send2] states that if I is one of the
alternatives (left premise), and if the network state allows I to reduce with
an asynchronous send (right premise), then I can be selected (conclusion).

• Rule [I-Recv1] states that if c identifies a non-empty channel (premise),
then v can be asynchronously received through the channel by dequeueing
it from the front of the buffer (conclusion). Rule [I-Recv2] states that if I
is one of the alternatives (left premise), and if the network state allows I to
reduce with an asynchronous receive (right premise), then I can be selected
(conclusion).

• Rule [I-SendRecv1], [I-SendRecv2], [I-SendRecv3], and [I-SendRecv4] state
that if c identifies an open, unbuffered channel, then the value of e can be
synchronously sent and received through the channel.

7To be formally precise, we make a distinction between numeric values in V (i.e., 0, 1, 2, . . .) and
“actual” numbers (i.e., 0, 1, 2, . . .). For instance, numeric value 5 represents “actual” number 5.

Springer Nature 2021 LATEX template

The Discourje Project 25

N(c) = ⊥ eval(e) represents n

((chan e x) .J,N)
τ−→ (J[c/x], N [c 7→ (>, n, ε)])

[I-Chan]

N(c) = (>, ~w, n) 0 < |~w| < n

((send c e) .J,N)
c!eval(e)−−−−−→ (J,N [c 7→ (>, eval(e)~w, n)])

[I-Send1]

I ∈ I (I,N)
c!v−−→ (I

′
, N
′
)

(
∑
I, N)

c!v−−→ (I
′
, N
′
)

[I-Send2]

N(c) = (b, ~wv, n)

((recv c x) .J,N)
c?v−−→ (J[v/x], N [c 7→ (b, ~w, n)])

[I-Recv1]

I ∈ I (I,N)
c?v−−→ (I

′
, N
′
)

(
∑
I, N)

c?v−−→ (I
′
, N
′
)

[I-Recv2]

N(c) = (>, ε, 0)

(((send c e) .J1) ‖ ((recv c x) .J2), N)
c!?eval(e)−−−−−→ (J1 ‖ J2[eval(e)/x], N)

[I-SendRecv1]

(recv c x) .J2 ∈ I2 N(c) = (0,>, ε)

((send c e) .J1 ‖
∑
I2, N)

c!?eval(e)−−−−−→ (J1 ‖ J2[eval(e)/x], N)

[I-SendRecv2]

(send c e) .J1 ∈ I1 N(c) = (0,>, ε)

(
∑
I1 ‖ (recv c x) .J2, N)

c!?eval(e)−−−−−→ (J1 ‖ J2[eval(e)/x], N)

[I-SendRecv3]

(send c e) .J1 ∈ I1 (recv c x) .J2 ∈ I2 N(c) = (0,>, ε)

(
∑
I1 ‖

∑
I2, N)

c!?eval(e)−−−−−→ (J1 ‖ J2[eval(e)/x], N)

[I-SendRecv4]

eval(e) = true

(if e I1 I2, N)
τ−→ (I1, N)

[I-If1]
eval(e) = false

(if e I1 I2, N)
τ−→ (I2, N)

[I-If2]

(I1, N)
ι−→ (I

′
1, N)

(I1 ‖ I2, N)
ι−→ (I

′
1 ‖ I2, N)

[I-Par1]

(I2 ‖ I1, N)
ι−→ (I

′
, N
′
)

(I1 ‖ I2, N)
ι−→ (I

′
, N
′
)

[I-Par2]
((I1 ‖ I2) ‖ I3, N)

ι−→ (I
′
, N
′
)

(I1 ‖ (I2 ‖ I3), N)
ι−→ (I

′
, N
′
)

[I-Par3]

Fig. 18: Operational semantics of implementations

We note that these four rules can be reformulated using two separate rules
for sending (similar to [I-Send1] and [I-Send2]), two for receiving (similar
to [I-Recv1] and [I-Recv2]), and one to synchronise these actions. However,
this would require an auxiliary reduction relation, while the total number
of rules is higher.

• Rules [I-If1] and [I-If2] are standard.

• Rule [I-Par1] states that if I1 can reduce (premise), then the interleaving
of I1 and I2 can reduce accordingly. Rules [I-Par2] and [I-Par3] state that
interleaving is commutative and associative.

Springer Nature 2021 LATEX template

26 The Discourje Project

A run →I of implementation I is a subset of → such that:

• There exist ι, I ′, N ′ such that (I, ∅) ι−→I (I ′, N ′). That is, the run has a
proper initial configuration.

• If (I ′, N ′)
ι1−→I (I ′′1 , N

′′
1) and (I ′, N ′)

ι2−→I (I ′′2 , N
′′
2), then ι1 = ι2 and I ′′1 = I ′′2

and N ′′1 = N ′′2 . That is, every configuration in the run has a unique successor.

We note that we do not require runs to be complete, as we also want to verify
the safety of partial runs that are not finished yet, but which are safe so far.

4.3 Verification

To formally define safety, we introduce the following auxiliary definitions:

• Let C → (R × R) ∪ {⊥} denote the set of instrumentations, ranged over
by †. In words, every instrumentation is a partial function from channel
identifiers to pairs of roles of the form pq, where p is the intended sender and
q is the intended receiver. The idea is that every † establishes links between
channel references in an implementation (characterised by their identifiers)
and channel references in a specification (characterised by roles).

• Let :† ⊆ I×Σ denote the †-compliance relation between type-level actions
and value-level actions; it is induced by the following rules:

v is of type t

c!?v :† †(c)!?t
v is of type t

c!v :† †(c)!t
v is of type t

c?v :† †(c)?t

In words, the rules state that an action implementation ι complies with an
action specification σ if: (1) the channel identified by c in ι is linked by † to
the intended sender and the intended receiver that occur in σ; (2) the value
that occurs in ι is of the type that occurs in σ.

Safety (“bad channel actions never happen”) is formally defined in terms
of weak simulation (e.g., [47]). More precisely, given instrumentation †, a run
→I of implementation I is †-safe relative to specification S, if there exists a
binary simulation relation � such that:

• (I, ∅) � S
• If (I ′, N ′) � S′ and (I ′, N ′)

ι−→I (I ′′, N ′′) and ι 6= τ, then there exist σ, S′′

such that (I ′′, N ′′) � S′′ and S′
σ−→ S′′ and ι :† σ.

• If (I ′, N ′) � S′ and (I ′, N ′)
τ−→I (I ′′, N ′′), then (I ′′, N ′′) � S′.

In words, (I ′, N ′) � S′ iff S′ can reduce accordingly to S′′ whenever (I ′, N ′)
can reduce to I ′′ (and (I ′′, N ′′) and S′′ are again related by �), modulo τ-
reductions. That is, (I ′, N ′) can be mimicked by S′, coinductively.

5 Practice of discourje

In this section, we present two practical aspects of the discourje library. First,
we explain the main components and their internals in more detail (Sect. 5.1).

Springer Nature 2021 LATEX template

The Discourje Project 27

S JSK JSK

monitor

session monitor

Fig. 19: discourje.spec

I I

instr.

link

Fig. 20: discourje.core.async

Next, we present performance experiments using both microbenchmarks and
whole-program benchmarks (Sect. 5.2).

5.1 The Library

The discourje library consists of three main components, each of which
corresponds with an activity in the intended workflow (Fig. 4):

• discourje.core.spec is a sublibrary to write specifications (Sect. 5.1.1).
• discourje.core.lint is a sublibrary to check specifications (Sect. 5.1.2).
• discourje.core.async is a sublibrary to write implementations (Sect. 5.1.3).

5.1.1 Writing specifications: discourje.core.spec

Sublibrary discourje.core.spec consists of macros to write specifications (cf.
syntax of the specification calculus; Sect. 4.1); data structures to represent
specifications as state machines (cf. operational semantics of the specification
calculus); and functions to instantiate these data structures and construct
monitors. The idea is visualised in Fig. 19: first, the programmer writes a
specification S using the macros; next, at run-time, function spec is applied to
S to expand and evaluate the macros to a state machine JSK; next, function
monitor is applied to JSK to create a monitor.

The monitor provides two operations, depicted as “lollipops” in Fig. 19:
verifying if a given channel action ι is allowed in current state q of JSK =
(Q, q0,∆) (formally: given instrumentation †, check if there exist σ, S′ such that
(q, (σ, S′)) ∈ ∆ and ι :† σ), and subsequently updating the current state of JSK
to a successor. In this way, effectively, the monitor builds a simulation relation
to ensure safety (Sect. 4.3), incrementally, as channel actions are performed.
We note that operations verify and update happen atomically, using lock-free
synchronisation (compare-and-set): an update happens only if both verification
succeeded and there has been no update in the meantime. Besides this base
functionality, discoure.core.spec also offers the following extensions:

• Non-determinism: To support nondeterministic specifications, the moni-
tor maintains a set of possible current states {q1, . . . , qn} instead of a single
state. To verify if channel action ι is allowed, the monitor iterates over
all states in the set to find at least one of them that has a correspond-
ing transition (formally: given instrumentation †, check if there exist i, σ, S′

such that (qi, (σ, S
′)) ∈ ∆ and ι :† σ). If so, to subsequently update the

set of current states, the monitor collects all possible successors (formally:

Springer Nature 2021 LATEX template

28 The Discourje Project

{(σ, S′) | (q, (σ, S′)) ∈ ∆ and ι :† σ}). In this way, essentially, the state
machine is determinised using an on-the-fly power set construction.

• Incremental generation: Instead of generating the whole state machine
for S upfront, the monitor can also generate it incrementally, by need. This is
advantageous if only a small portion of the state machine is actually needed.

5.1.2 Checking specifications: discourje.core.lint

Sublibrary discourje.core.lint consists of functions to validate generic sanity
checks (Sect. 3.1) and protocol-specific temporal requirements. The core of
discourje.core.lint is a custom-built model checker for CTL. The idea is
to: first, define intended requirements of a specification S as CTL formulas
(Fig. 17); next, compute state machine JSK; next, invoke a classical CTL model
checking algorithm [48]. Besides this base functionality, discourje.core.lint
also offers the following extensions:

• Batch mode: When asked to batch-check multiple formulas, the model
checker reuses the state machine and bookkeeping information across formu-
las, to avoid double work. Notably, the generic sanity checks are performed
in batch mode to improve performance.

• Past-time operators: CTL allows the programmer to express require-
ments in terms of properties of the future. However, in our experience, many
requirements are more naturally expressed in terms of properties of the past.
For instance: “if a channel is closed, then it must have been used before”
(i.e., one of the generic sanity checks). Therefore, discourje.core.lint also
supports Past CTL (with branching past) [49].

• Witness generation: To use discourje.core.lint effectively for debug-
ging, proper diagnostics must be included when an issue is reported.
Therefore, discourje.lint can generate witnesses that serve as counterex-
amples of a CTL formula. As usual for CTL (e.g., [50]), our witness generator
works only for the universal fragment of CTL.

• API: Using an extra API (in Clojure), custom atomic propositions and
temporal patterns can be written to extend the core. We used this feature
to write the generic causality check, as it cannot be easily expressed using
only the standard atomic propositions.

5.1.3 Running implementations: discourje.core.async

Sublibrary discourje.core.async consists of functions that serve as proxies for
functions and macros threadthreadthread (new thread), chanchanchan (new channel), close!close!close! (clos-
ing), >!!>!!>!! (send), <!!<!!<!! (receive), and alts!!alts!!alts!! (select) in clojure.core.async. The
idea is visualised in Fig. 20: first, the programmer writes an implementation I;
next, at run-time, function link is applied to the channels in I to create instru-
mentation. More precisely, function link associates a channel with an intended
sender, intended receiver, and monitor; it is the practical embodiment of func-
tion † (Sect. 4.3). We emphasise that no other changes to I are needed: as

Springer Nature 2021 LATEX template

The Discourje Project 29

the signatures of the supported macros and functions in clojure.core.async

(listed above) are identical to their proxies in discourje.core.async, adding
instrumentation in this way is non-invasive and nearly effortless.

In more detail, the proxies of >!!>!!>!!, <!!<!!<!!, and closecloseclose in discourje.core.async

work as follows. When one of these functions is invoked, first, it waits until
the underlying channel c is ready for the operation: in case of a send or receive
through an unbuffered channel, a reciprocal receive or send needs to be pend-
ing; in case of a send or receive through a buffered channel, the buffer needs to
be non-full or non-empty. Next, at time t1, the monitor linked to c is requested
to verify if the attempted send, receive, or closing is allowed. If yes, at time
t2, the monitor is requested to update accordingly and the attempted send,
receive, or closing actually takes effect (i.e., a value is synchronously exchanged
or asynchronously enqueued/dequeued); if no, an exception is thrown. If,
between t1 and t2, multiple threads request the monitor to update, only one
will succeed; the others need to retry from the start. In this way, safety viola-
tions are detected in a way that is both sound (i.e., if an exception is thrown,
the violating action really was not allowed) and complete (i.e., if no exception
is thrown, all actions were really allowed).

Finally, we note that Java interoperability is supported. That is, to leverage
the fact that Clojure compiles to Java bytecode and runs on the JVM, we also
wrote a thin Java wrapper around discourje.core.async, so Java program-
mers can easily use channels and have them monitored from inside their Java
programs, regardless of the threading mechanism (e.g., classical Java threads,
thread pools, or parallel streams can be used).

5.2 Performance Experiments

From the outset, we had two intended usage types of the discourje library:

• Usage type A: As a testing/debugging tool for concurrent programs in
development, to find/diagnose communication-related concurrency bugs.

• Usage type B: As a fail-safe mechanism for concurrent programs in pro-
duction, to prevent propagation of spurious results caused by concurrency
bugs to end-users (i.e., it is often preferable to throw a runtime error).

A key factor that determines discourje’s fitness for purpose is efficiency.
We therefore conducted two kinds of performance experiments: microbench-
marks to study the scalability of discourje (Sect. 5.2.1) and whole-program
benchmarks to study the overhead relative to unmonitored code (Sect. 5.2.2).

In all experiments, we used a machine with 32 physical cores and 64 GB of
physical memory (far more than needed for our benchmarks), using CentOS
Linux 8 (kernel: 4.18) and Java 16.0.1 (HotSpot JVM) with default settings.

5.2.1 Microbenchmarks

In the microbenchmarks, we studied discourje’s scalability under “extreme”
circumstances in which threads perform only sends and receives, without any

Springer Nature 2021 LATEX template

30 The Discourje Project

1 (defroledefroledefrole :worker)
2 (defroledefroledefrole :master)
3

4 (defsessiondefsessiondefsession :ring-unbuffered [k]
5 (*** (cat-everycat-everycat-every [i (range k)]
6 (-->-->--> Boolean (:worker i) (:worker (mod (inc i) k))))))
7

8 (defsessiondefsessiondefsession :ring-buffered [k]
9 (*** (cat-everycat-everycat-every [i (range k)]

10 (-->>-->>-->> Boolean (:worker i) (:worker (mod (inc i) k))))))
11

12 (defsessiondefsessiondefsession :star-unbuffered-outwards [k] ;; one-to-many
13 (*** (alt-everyalt-everyalt-every [i (range k)]
14 (-->-->--> Boolean :master (:worker i)))))
15

16 (defsessiondefsessiondefsession :star-unbuffered-inwards [k] ;; many-to-one
17 (*** (alt-everyalt-everyalt-every [i (range k)]
18 (-->-->--> Boolean (:worker i) :master))))
19

20 (defsessiondefsessiondefsession :star-buffered-outwards [k] ;; one-to-many
21 (par-everypar-everypar-every [i (range k)]
22 (*** (-->>-->>-->> Boolean :master (:worker i)))))
23

24 (defsessiondefsessiondefsession :star-buffered-inwards [k] ;; many-to-one
25 (par-everypar-everypar-every [i (range k)]
26 (*** (-->>-->>-->> Boolean (:worker i) :master))))

Fig. 21: Specifications of microbenchmark protocols

Table 1: Properties of the benchmark protocols

pattern #states #trans/state

:ring-unbuffered ring linear constant
:ring-buffered ring linear constant
:star-unbuffered-outwards one-to-many constant linear
:star-unbuffered-inwards many-to-one constant linear
:star-buffered-outwards one-to-many exponential linear
:star-buffered-inwards many-to-one exponential linear

real computations; this is the worst-case scenario for the lock-free algorithm
to synchronise monitor access, as it gives rise to maximal thread contention.

We considered six basic protocols to investigate the core features of the
specification language in isolation. The specifications are shown in Fig. 21;
their relevant properties are summarised in Tab. 1 (discussed below).

Specifications :ring-unbuffered and :ring-buffered combine concatena-
tion with synchronous and asynchronous communication. Specifications :star-
unbuffered-outwards and :star-unbuffered-inwards combine choice with syn-
chronous communication; their state machines have only a single state (with an
outgoing transition for every :worker thread). Specifications :star-buffered-

outwards and :star-buffered-inwards combine interleaving with asynchronous
communication; their state machines have exponentially many states due to
the combinatorial explosion of the orders in which the communications can

Springer Nature 2021 LATEX template

The Discourje Project 31

0

1

2

3

2 4 6 8 10 12 14 16

(a) :ring-unbuffered

0

1

2

3

2 4 6 8 10 12 14 16

(b) :ring-buffered

0

1

2

3

4

5

2 4 6 8 10 12 14 16

(c) :star-unbuffered-outwards

0

1

2

3

4

5

2 4 6 8 10 12 14 16

(d) :star-unbuffered-inwards

1

10

100

1000

2 4 6 8 10 12 14 16

(e) :star-buffered-outwards

1

10

100

2 4 6 8 10 12 14 16

(f) :star-buffered-inwards

Fig. 22: Microbenchmarks: run times in seconds (y-axis) as the number of
worker threads increases (x-axis), as a measure of scalability

be interleaved. Each of these specifications consists of a loop with an unspec-
ified number of iterations (***). In every iteration of :ring-unbuffered and
:ring-buffered, the roles need to communicate according to a ring pattern; in
every iteration of :star-unbuffered-outwards and :star-unbuffered-inwards,
the roles need to communicate according to a one-to-many pattern; in every
iteration of :star-unbuffered-inwards and :star-buffered-inwards, the roles
need to communicate according to a many-to-one pattern.

Springer Nature 2021 LATEX template

32 The Discourje Project

We ran every implementation of these protocols with k ∈ {2, 4, 6, 8, 10, 12,
14, 16} :worker threads8, for 4096 loop iterations, and measured the run times.
For every implementation, for every protocol, and for every k, we repeated
the run 30 times to smooth out variability, on separate “cold” instances of
the JVM to rule out JIT impact across repetitions. We computed the mean
m, standard deviation s, and coefficient of variation s

m . The means are shown
in Fig. 22; the coefficients of variation were all less than 10%, so the general
trends are informative.

To explain the general trends, we model the total run time t of an implemen-
tation in terms of its two dominant components, using the following equation:
t = tmach + tact, where tmach is the time required to compute the state machine
for the specification, and tact is the time required to perform all sends and
receives. Using this model, we summarise the main findings as follows:

• We observe linear scalability for :ring-unbuffered, :ring-buffered, :star-
unbuffered-outwards, and :star-unbuffered-inwards.
To explain this, we first note that the number of states (column “#states”
in Tab. 1) and the number of transitions per state (column “#trans/state”)
grow linearly in k for these specifications, so tmach grows linearly in k too.
We also note that the number of sends and receives grows linearly in k, so
tact grows linearly in k too. Thus, t = tmach + tact grows linearly in k.

• We observe exponential scalability for :star-buffered-outwards and :star-

buffered-inwards (i.e., the scale on the y-axis is logarithmic).
To explain this, we note that the number of states (column “#states” in
Tab. 1) grows exponentially in k, so tmach grows exponentially in k too.
Thus, t = tmach + tact grows exponentially in k.

We note that we use equation t = tmach + tact only as a model to explain the
general trends; we have not measured tmach and tact separately.

To conclude, :ring-unbuffered, :ring-buffered, :star-unbuffered-out-

wards, and :star-unbuffered-inwards enjoy fine scalability. However, scalabil-
ity of :star-buffered-outwards and :star-buffered-inwards can be improved.

5.2.2 Whole-Program Benchmarks

In the whole-program benchmarks, we studied discourje’s overhead in five
real(istic), existing concurrent programs:

• Chess: Simulates a game of chess between two player threads.

• Conjugate Gradient (CG-k): Computes an estimate of the largest eigen-
value of a symmetric positive definite sparse matrix with a random pattern
of nonzeros, using the conjugate gradient algorithm, with k worker threads.

• Fourier Transform (FT-k): Computes the solution of a partial differential
equation, using the forward and inverse Fast Fourier Transform algorithm,
with 2·k worker threads.

8For the ring protocols, the total number of threads is k; for the one-to-many/many-to-one
protocols, the total number of threads is k+1 (including the master thread).

Springer Nature 2021 LATEX template

The Discourje Project 33

• Integer Sort (IS-k): Computes a sorted list of uniformly distributed
integer keys, using histogram-based integer sorting, with k worker threads.

• Multi-Grid (MG-k): Computes an approximate solution u to the discrete
Poisson problem ∇2u = v, using the V-cycle multigrid algorithm, with 4·k
worker threads.

For Chess, we used Clojure code similar to the threads in Tic-Tac-Toe
(Fig. 11), combined with invocations of the open source chess engine Stock-
fish (https://stockfishchess.org) to compute moves. For CG, FT, IS, and MG,
we adapted existing Java implementations from the NAS Parallel Benchmarks
(NPB) [51] suite, which consists of computational fluid dynamics kernels, by
taking advantage of our Java interoperability wrapper (Sect. 5.1.3) to replace
the monitor-based synchronisation used in the original versions.

We also wrote specifications using discourje. For Chess, the specification is
the same as the Tic-Tac-Toe specification (Fig. 10); for CG, FT, IS, and MG,
the specifications consist of repetitions of buffered one-to-many and many-to-
one patterns (Fig. 21), involving various subsets of worker threads and data
types. From a communication perspective, the key difference between CG,
FT, IS, and MG is the frequency in which repetitions of the one-to-many and
many-to-one patterns happen (i.e., communication intensity).

We recorded execution times of each of the implementations without and
with monitoring enabled, using standardised computational workloads. For
Chess, the workload is controlled by the total amount of time each player has
to compute its moves during the entire game; we used the four smallest such
workloads supported by the open source chess server Lichess (https://lichess.
org), namely {15, 30, 45, 60} seconds, and we limited games to a maximum of
40 turns per player (UltraBullet chess). Furthermore, we allow simultaneous
“ponder” computations by a player during its opponent’s turn, so there is
ample parallelism as well. For CG, FT, IS, and MG, the workload is controlled
by the input size; we used the standardised inputs that are predefined by NPB.

For every implementation (without and with monitoring enabled), and for
every k, we repeated the run 30 times to smooth out variability, and we com-
puted the mean m, standard deviation s, and coefficient of variation s

m . All
coefficients of variation were smaller than 10%, except for CG-14 (15%) and
CG-16 (18%), so the general trends are informative. As a measure of overhead,
we computed normalised means µw

µwo
, where µw and µwo are mean run times

with and without monitoring enabled; this metric is a dimensionless number
that indicates the factor by which monitoring slows down the implementation.
The normalised means for Chess are 0.979 (15 seconds), 0.999 (30 seconds),
0.996 (45 seconds), and 0.996 (60 seconds); the normalised means for NPB
are shown in Fig. 23. We summarise the main findings as follows, relative to
intended usage types A and B of the discourje library (page 29):

• For Chess, the normalised means are all very close to 1, which indicates that
the overhead of monitoring is negligible. This suggests that intended usage
types A and B are both possible for Chess.

https://stockfishchess.org
https://lichess.org
https://lichess.org

Springer Nature 2021 LATEX template

34 The Discourje Project

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2 4 6 8 10 12 14 16

(a) CG

0.90

0.95

1.00

1.05

1.10

1.15

2 4 6 8 10 12 14 16

(b) FT

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

2 4 6 8 10 12 14 16

(c) IS

0.00
0.50

1.00
1.50

2.00
2.50

3.00
3.50

4.00

2 4 6 8 10 12 14 16

(d) MG

Fig. 23: NPB: slowdown of running implementations with monitoring enabled
relative to running them without monitoring enabled (y-axis) as the number
of worker threads increases (x-axis), as a measure of overhead

• For FT and IS, the slowdowns are all less than 12%. This seems low enough
not only for usage type A (testing/debugging in development), but also
usage type B (fail-safe mechanism in production).
We also note that the specifications for FT and IS are (extended versions of)
specifications :star-buffered-inwards and :star-buffered-outwards, which
scaled poorest in the microbenchmarks. This shows that despite poor scal-
ability under the “extreme” circumstances in the microbenchmarks (only
sends and receives; no computations), discourje can still perform reasonably
well in whole programs.

• For CG and MG, the slowdowns are higher: up to 5.3× and 3.7×, respec-
tively. Although this is likely to be too much for usage type B, it seems
low enough for usage type A (cf. the industrial-strength Valgrind tool for
dynamic analysis of memory management [52], which can inflict similar
slowdowns but is nevertheless effectively used in practice).
The difference in performance between {FT, IS} and {CG, MG} may be
explained by the fact the latter are considerably more communication-
intensive than the former, so the overhead of monitoring communications is
more pronounced.

Springer Nature 2021 LATEX template

The Discourje Project 35

6 Conclusion

We presented Discourje: a research project that aims to help programmers
cope with channels and concurrency bugs in Clojure, based on dynamic anal-
ysis. That is: Discourje offers a run-time verification library in Clojure, called
discourje, to ensure safety of channel actions in implementations relative
to specifications. The formal foundations of discourje are based on multi-
party session types, but trade in static type checking for dynamic run-time
monitoring; a key advantage is higher expressiveness.

An important design principle of discourje has been ergonomics: we aim
to make discourje’s usage as comfortable as possible. In particular, program-
mers can decide to start using discourje at any stage of development (and
doing so requires little effort); discourje is itself implemented in Clojure (so
there is no need to use a different IDE, learn completely new syntax, or install
special compilers); and discourje can be used seamlessly alongside other con-
currency libraries. Furthermore, results in performance experiments indicate
that run time overhead can be less than 12% for real(istic), existing concurrent
programs. This makes discourje suitable both as a testing/debugging tool in
development and as a fail-safe mechanism in production.

We close this paper with an overview of related work (Sect. 6.1) and future
work (Sect. 6.2).

6.1 Related Work

As explained in Sect. 1.1.2, the Discourje project was originally conceived
to explore a new direction in research on multiparty session types (MPST).
In recent years, several practical tools were developed, mostly for statically
typed languages (e.g., F# [26], Go [7], Java [27, 28], Scala [29]), and to lesser
extent for dynamically typed languages (e.g., Python [53], Erlang [54]). To
our knowledge, in the context of MPST, the Discourje project is the first to
leverage run-time verification and decomposition-free verification together for
a dynamically typed language (Fig. 1), although these characteristics have
been considered in isolation:

• There are MPST approaches that combine static type checking with a form
of distributed run-time verification and/or assertion checking [19, 26, 55–
57]. In contrast to Discourje, however, these dynamic techniques still rely
on decomposition, which negatively affects their expressiveness (e.g., none
of the case studies in Sects. 3.2–3.4 are supported).

• Decomposition-free MPST has also been explored by López et al. [58, 59].
The idea is to specify MPI communication protocols in an MPI-tailored DSL,
inspired by MPST, and verify the implementation against the specification
using deductive verification tools (VCC [60] and Why3 [61]). However, this
approach requires considerable manual effort. In contrast, discourje can be
used in a fully automated way.

Springer Nature 2021 LATEX template

36 The Discourje Project

Expressiveness of MPST has been an important research topic in recent
years, but efforts have primarily been geared towards adding more advanced
features (e.g., time [18, 19], security [20–23], and parametrisation [7, 24, 25]);
in contrast, restrictions on the usage of core features, such as choice and inter-
leaving have remained, even though they limit MPST’s applicability in practice
(e.g., none of the case studies in Sects. 3.2–3.4 are supported). Some work has
been done to improve expressiveness in this regard using static techniques [62],
but the specification language of discourje remains more expressive.

Verification of shared-memory concurrency with channels has received
attention in the context of Go [8–11]. However, in addition to relying on static
techniques, emphasis in these works is on checking deadlock-freedom, liveness,
and generic safety properties, while we focus on program-specific protocol com-
pliance. Castro et al. [7] also consider protocol compliance for Go, but their
specification language is substantially less expressive than discourje (e.g., none
of the case studies in Sects. 3.2–3.4 are supported).

We are aware of only two other works that use formal techniques to reason
about Clojure programs: Bonnaire-Sergeant et al. [63] formalised the optional
type system for Clojure and proved soundness, while Pinzaru et al. [64] devel-
oped a translation from Clojure to Boogie [65] to verify Clojure programs
annotated with pre/post-conditions. Discourje seems the first research project
to target concurrency in Clojure.

6.2 Future Work

We aim to improve discourje along the following lines:

• Recovery: We aim to explore the idea that whenever a monitor detects
a safety violation, instead of throwing an exception, it should delay the
violating action as a corrective measure, in an attempt to steer the imple-
mentation towards safety. When done naively, such delays can easily give
rise to deadlocks, so our plan is to combine this approach with run-time
model checking/reachability analysis to ensure that eventually, the violating
action will be allowed (if yes, delay; if no, throw).

• Scalability: Our microbenchmarks show that we need better ways to deal
with specifications with exponentially sized state machines. Our plan is to
study new forms of flexible decomposition that allow us to compute local
specifications as in traditional MPST (Fig. 1) to avoid exponential blow-up
whenever possible, but without compromising expressiveness (by keeping a
centralised component, like the current monitors, if needed).

Orthogonally, we would like to better understand the effectiveness of using
discourje (e.g., in terms of reduced development costs).

Acknowledgments. Funded by the Netherlands Organisation of Scientific
Research (NWO): 016.Veni.192.103. This work was carried out on the Dutch
national e-infrastructure with the support of SURF Cooperative.

Springer Nature 2021 LATEX template

The Discourje Project 37

References

[1] Go Team: Effective Go - The Go Programming Language. Accessed 28
October 2021, https://golang.org/doc/effective go.html (nd)

[2] Go Team: Go 2016 Survey Results - The Go Blog. Accessed 28 October
2021, https://blog.golang.org/survey2016-results (2017-06-03)

[3] Go Team: Go 2017 Survey Results - The Go Blog. Accessed 28 October
2021, https://blog.golang.org/survey2017-results (2018-02-26)

[4] Go Team: Go 2018 Survey Results - The Go Blog. Accessed 28 October
2021, https://blog.golang.org/survey2018-results (2019-03-28)

[5] Go Team: Go Developer Survey 2019 Results - The Go Blog. Accessed 28
October 2021, https://blog.golang.org/survey2019-results (2020-04-20)

[6] Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concur-
rency bugs in go. In: ASPLOS, pp. 865–878. ACM, ??? (2019)

[7] Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed
programming using role-parametric session types in go: statically-typed
endpoint apis for dynamically-instantiated communication structures.
PACMPL 3(POPL), 29–12930 (2019)

[8] Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and
safety for channel-based programming. In: POPL, pp. 748–761. ACM, ???
(2017)

[9] Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification frame-
work for message passing in go using behavioural types. In: ICSE, pp.
1137–1148. ACM, ??? (2018)

[10] Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global
session graph synthesis. In: CC, pp. 174–184. ACM, ??? (2016)

[11] Stadtmüller, K., Sulzmann, M., Thiemann, P.: Static trace-based deadlock
analysis for synchronous mini-go. In: APLAS. Lecture Notes in Computer
Science, vol. 10017, pp. 116–136 (2016)

[12] Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to
runtime verification. In: Lectures on Runtime Verification. Lecture Notes
in Computer Science, vol. 10457, pp. 1–33. Springer, ??? (2018)

[13] Clojure Team: Clojure - State of Clojure 2019 Results. Accessed
28 October 2021, https://clojure.org/news/2019/02/04/state-of-clojure-
2019 (2019-02-04)

Springer Nature 2021 LATEX template

38 The Discourje Project

[14] Clojure Team: Clojure - State of Clojure 2020 Results. Accessed28 Octo-
ber 2021, https://clojure.org/news/2020/02/20/state-of-clojure-2020
(2019-02-20)

[15] Clojure Team: Clojure - Clojure core.async Channels. Accessed 28
October 2021, https://clojure.org/news/2013/06/28/clojure-clore-async-
channels (2013-06-28)

[16] Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. In: POPL, pp. 273–284. ACM, ??? (2008)

[17] Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini,
M., Yoshida, N.: Global progress in dynamically interleaved multiparty
sessions. In: CONCUR. Lecture Notes in Computer Science, vol. 5201,
pp. 418–433. Springer, ??? (2008)

[18] Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In:
CONCUR. Lecture Notes in Computer Science, vol. 8704, pp. 419–434.
Springer, ??? (2014)

[19] Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput. 29(5), 877–910 (2017)

[20] Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Typing access control
and secure information flow in sessions. Inf. Comput. 238, 68–105 (2014)

[21] Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow
safety in multiparty sessions. Math. Struct. Comput. Sci. 26(8), 1352–
1394 (2016)

[22] Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., Rezk, T.: Session
types for access and information flow control. In: CONCUR. Lecture
Notes in Computer Science, vol. 6269, pp. 237–252. Springer, ??? (2010)

[23] Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and
secure information flow in multiparty communications. Formal Asp.
Comput. 28(4), 669–696 (2016)

[24] Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty
session types. Log. Methods Comput. Sci. 8(4) (2012)

[25] Ng, N., Yoshida, N.: Pabble: parameterised scribble. Serv. Oriented
Comput. Appl. 9(3-4), 269–284 (2015)

[26] Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider:
compile-time API generation of distributed protocols with refinements in
f#. In: CC, pp. 128–138. ACM, ??? (2018)

Springer Nature 2021 LATEX template

The Discourje Project 39

[27] Hu, R., Yoshida, N.: Hybrid session verification through endpoint API
generation. In: FASE. Lecture Notes in Computer Science, vol. 9633, pp.
401–418. Springer, ??? (2016)

[28] Hu, R., Yoshida, N.: Explicit connection actions in multiparty session
types. In: FASE. Lecture Notes in Computer Science, vol. 10202, pp. 116–
133. Springer, ??? (2017)

[29] Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of
multiparty sessions for safe distributed programming. In: ECOOP. LIPIcs,
vol. 74, pp. 24–12431. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
??? (2017)

[30] Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou,
P., Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Mar-
tins, F., Mascardi, V., Montesi, F., Neykova, R., Ng, N., Padovani,
L., Vasconcelos, V.T., Yoshida, N.: Behavioral types in programming
languages. Foundations and Trends in Programming Languages 3(2-3),
95–230 (2016)

[31] Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M.,
Deniélou, P., Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira,
H.T., Zavattaro, G.: Foundations of session types and behavioural con-
tracts. ACM Comput. Surv. 49(1), 3–1336 (2016)

[32] Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and
multi-party session. Logical Methods in Computer Science 8(1) (2012)

[33] Hamers, R., Jongmans, S.: Discourje: Runtime verification of communi-
cation protocols in clojure. In: TACAS (1). Lecture Notes in Computer
Science, vol. 12078, pp. 266–284. Springer, ??? (2020)

[34] Hamers, R., Jongmans, S.: Safe sessions of channel actions in clojure: A
tour of the discourje project. In: ISoLA (1). Lecture Notes in Computer
Science, vol. 12476, pp. 489–508. Springer, ??? (2020)

[35] Horlings, E., Jongmans, S.: Analysis of specifications of multiparty ses-
sions with dcj-lint. In: ESEC/SIGSOFT FSE, pp. 1590–1594. ACM, ???
(2021)

[36] Clojure Team: Clojure. Accessed 28 October 2021, https://clojure.org
(nd)

[37] Hickey, R.: The clojure programming language. In: DLS, p. 1. ACM, ???
(2008)

[38] Hickey, R.: A history of clojure. Proc. ACM Program. Lang. 4(HOPL),

Springer Nature 2021 LATEX template

40 The Discourje Project

71–17146 (2020)

[39] Stack Overflow: Stack Overflow Developer Survey 2019. Accessed 28
October 2021, https://insights.stackoverflow.com/survey/2019 (2019)

[40] Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. J. ACM 63(1), 9–1967 (2016)

[41] Tasharofi, S., Dinges, P., Johnson, R.E.: Why do scala developers mix the
actor model with other concurrency models? In: ECOOP. Lecture Notes
in Computer Science, vol. 7920, pp. 302–326. Springer, ??? (2013)

[42] Parlett, D.: The Penguin Book of Card Games. Penguin, ??? (2008)

[43] Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical
Computer Science. An EATCS Series. Springer, ??? (2000)

[44] Baeten, J.C.M., Bravetti, M.: A ground-complete axiomatisation of finite-
state processes in a generic process algebra. Math. Struct. Comput. Sci.
18(6), 1057–1089 (2008)

[45] Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–
266 (1982)

[46] Reynolds, M.: An axiomatization of full computation tree logic. J. Symb.
Log. 66(3), 1011–1057 (2001)

[47] van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in
bisimulation semantics. J. ACM 43(3), 555–600 (1996)

[48] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8(2), 244–263 (1986)

[49] Kupferman, O., Pnueli, A.: Once and for all. In: LICS, pp. 25–35. IEEE
Computer Society, ??? (1995)

[50] Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient gener-
ation of counterexamples and witnesses in symbolic model checking. In:
DAC, pp. 427–432. ACM Press, ??? (1995)

[51] Frumkin, M.A., Schultz, M.G., Jin, H., Yan, J.C.: Performance and scal-
ability of the NAS parallel benchmarks in java. In: IPDPS, p. 139. IEEE
Computer Society, ??? (2003)

[52] Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight
dynamic binary instrumentation. In: PLDI, pp. 89–100. ACM, ??? (2007)

Springer Nature 2021 LATEX template

The Discourje Project 41

[53] Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical
interruptible conversations - distributed dynamic verification with session
types and python. In: RV. Lecture Notes in Computer Science, vol. 8174,
pp. 130–148. Springer, ??? (2013)

[54] Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced
recovery. In: CC, pp. 98–108. ACM, ??? (2017)

[55] Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring
networks through multiparty session types. Theor. Comput. Sci. 669, 33–
58 (2017)

[56] Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-
contract for distributed multiparty interactions. In: CONCUR. Lecture
Notes in Computer Science, vol. 6269, pp. 162–176. Springer, ??? (2010)

[57] Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical
interruptible conversations: distributed dynamic verification with multi-
party session types and python. Formal Methods in System Design 46(3),
197–225 (2015)

[58] López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vascon-
celos, V.T., Yoshida, N.: Protocol-based verification of message-passing
parallel programs. In: OOPSLA, pp. 280–298. ACM, ??? (2015)

[59] Santos, C., Martins, F., Vasconcelos, V.T.: Deductive verification of
parallel programs using why3. In: ICE. EPTCS, vol. 189, pp. 128–142
(2015)

[60] Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M.,
Santen, T., Schulte, W., Tobies, S.: VCC: A practical system for verifying
concurrent C. In: TPHOLs. Lecture Notes in Computer Science, vol. 5674,
pp. 23–42. Springer, ??? (2009)

[61] Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In:
ESOP. Lecture Notes in Computer Science, vol. 7792, pp. 125–128.
Springer, ??? (2013)

[62] Jongmans, S., Yoshida, N.: Exploring type-level bisimilarity towards more
expressive multiparty session types. In: ESOP. Lecture Notes in Computer
Science, vol. 12075, pp. 251–279. Springer, ??? (2020)

[63] Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional
types for clojure. In: ESOP. Lecture Notes in Computer Science, vol. 9632,
pp. 68–94. Springer, ??? (2016)

Springer Nature 2021 LATEX template

42 The Discourje Project

[64] Pinzaru, G., Rivera, V.: Towards static verification of clojure contract-
based programs. In: TOOLS. Lecture Notes in Computer Science, vol.
11771, pp. 73–80. Springer, ??? (2019)

[65] Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boo-
gie: A modular reusable verifier for object-oriented programs. In: FMCO.
Lecture Notes in Computer Science, vol. 4111, pp. 364–387. Springer, ???
(2005)

	Introduction
	Discourje in a Nutshell
	From the Programmer's Perspective
	From a Researcher's Perspective

	This Paper

	Preliminaries on Clojure
	A Tour of Discourje
	The Workflow
	Case Study: Tic–Tac–Toe
	Preface
	Specification
	Implementation

	Rock–Paper–Scissors
	Specification.
	Implementation

	Go Fish
	Specification
	Implementation

	Theory of discourje
	Specification Calculus
	Implementation Calculus
	Verification

	Practice of discourje
	The Library
	Writing specifications: discourje.core.spec
	Checking specifications: discourje.core.lint
	Running implementations: discourje.core.async

	Performance Experiments
	Microbenchmarks
	Whole-Program Benchmarks

	Conclusion
	Related Work
	Future Work
	Acknowledgments

