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Abstract. We present VeyMont: a deductive verification tool that aims
to make reasoning about functional correctness and deadlock freedom
of parallel programs (relatively complex) as easy as that of sequential
programs (relatively simple). The novelty of VeyMont is that it “inverts
the workflow”: it supports a new method to parallelise verified programs,
in contrast to existing methods to verify parallel programs. Inspired by
methods for distributed systems, VeyMont targets coarse-grained par-
allelism among threads (i.e., whole-program parallelisation) instead of
fine-grained parallelism among tasks (e.g., loop parallelisation).

1 Introduction

Deductive verification is a classical approach to reason about functional correct-
ness of programs. The idea is to annotate programs with logic assertions about
state. A proof system can subsequently be used to statically check whether or not
annotations are true (i.e., whether or not state dynamically evolves as asserted).

As multicore hardware and multithreaded software have become ubiquitous,
deductive verification has been facing an elusive open problem: the approach is
much harder to apply to parallel programs than to sequential programs. Towards
addressing this issue, in this paper, we present VeyMont. It is a deductive veri-
fication tool that aims to make reasoning about functional correctness and dead-
lock freedom of parallel programs as easy as that of sequential programs. The
novelty of VeyMont is that it “inverts the workflow”: it supports a new method to
parallelise verified programs, in contrast to existing methods to verify par-
allel programs. Unlike traditional model checkers, VeyMont proves properties
generally for all (possibly infinitely many) initial values of variables, instead of
specifically for instances. Unlike parallelising compilers, VeyMont targets coarse-
grained parallelism among threads (i.e., whole-program parallelisation), instead
of fine-grained parallelism among instructions (e.g., loop parallelisation).

Background. In the state-of-the-art on verification of sequential and parallel
programs, typically, proof systems based on (extensions of) Hoare logic [4, 21]
and separation logic [40,45] are used to prove properties of annotated programs.
To demonstrate the main concepts, Fig. 1 shows four functionally equivalent
programs to swap the values of variables x and y:
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{x = v1 ∧ y = v2}
z := x ; x := y ; y := z

{x = v2 ∧ y = v1}

(a) Sequential program

1 class SeqProgram {
2 int v1, v2, x, y, z;
3

4 context ...
5 requires x == v1 && y == v2;
6 ensures x == v2 && y == v1;
7 void swap() {
8 z = x; x = y; y = z;
9 } }

(b) Sequential program in VerCors

{x 7→ v1 ∗ y 7→ v2 ∗
z1 7→ ∗ z2 7→ }

barrier b

{z1 7→ v1 . z2 7→ v2,

z2 7→ v2 . z1 7→ v1} in

{x 7→ v1 ∗
z1 7→ }
z1 := x ;

wait b ;

x := z2

{x 7→ v2}

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

{y 7→ v2 ∗
z2 7→ }
z2 := y ;

wait b ;

y := z1

{y 7→ v1}


{x 7→ v2 ∗ y 7→ v1}

x 7→ v means shared
variable x is owned

(i.e., exclusive
permission to use) and

has value v;
“ ” means “any”.

φ1 ∗ φ2 means memory
can be separated into
two parts s.t. φ1 and

φ2 are true in
different parts.

φ1 . χ1, . . . , φn . χn

means: φi must be
true before thread i

passes the barrier; χi

will be true after.

(c) Parallel program, using a barrier

1 class Channel {
2 int s, buf; // state, buffer
3

4 resource lock_invariant () =
5 Perm(s, 1) **
6 (s == 1 || s == 2 || s == 3) **
7 (s == 1 ==> Perm(buf , 1\2)) **
8 (s == 2 ==> Perm(buf , 1\2));
9

10 context Perm(buf , 1\2);
11 ensures buf == v;
12 void writeValue(int v) {
13 lock this;
14 loop_invariant ...;
15 while (s != 1) { wait this; }
16 s = 2; buf = v;
17 unlock this;
18 }
19

20 ensures Perm(buf , 1\2);
21 ensures \result == buf;
22 int readValue () { ... }
23 }
24

25 class Thread {
26 Channel a, b; int v, v_old;

27 context Perm(v, 1);
28 context Perm(v_old , 1\2);
29 context Perm(a, 1\2);
30 context Perm(b, 1\2);
31 context Perm(b.buf , 1\2);
32 requires v == v_old;
33 requires a != null;
34 requires b != null;
35 ensures Perm(a.buf , 1\2);
36 ensures v_old == b.buf
37 ensures a.buf == v;
38 void run() {
39 b.writeValue(v);
40 v = a.readValue ();
41 } }
42

43 class ParProgram {
44 int v1, v2; Thread t1, t2;
45

46 context ...
47 requires t1.v == v1 && t2.v == v2;
48 ensures t1.v == v2 && t2.v == v1;
49 void swap() {
50 fork t1; fork t2;
51 join t1; join t2;
52 } }

(d) Parallel program in VerCors, using channels

Fig. 1: Example of deductive verification (swapping values)

– Fig. 1a shows a sequential program; it uses auxiliary variable z.
The program is annotated with two assertions (in teal), expressed in Hoare
logic: the precondition (top) specifies what must be true before the program
is run; the postcondition (bottom) specifies what will be true after.

– Fig. 1c shows a parallel program, with two threads; it uses a barrier b and
auxiliary variables z1 and z2. First, the “left thread” copies x into z1; next,
it waits on b (until the “right thread” has copied y into z2); next, it copies
z2 into x. In parallel, the “right thread” behaves symmetrically. The barrier
is crucial: without it, the threads can prematurely copy z1 and z2.
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The program is annotated with seven assertions (in teal), expressed in a vari-
ant of separation logic [22, 23]: the “global” and “local” pre/postconditions
specify the behaviour of the whole program and of the separate threads; the
barrier contract specifies for every thread what must be true before it passes
the barrier, and what will be true after (i.e., transfer of ownership and data).

– To offer also a more practical perspective, Fig. 1b and Fig. 1d show ex-
cerpts of the same programs, but represented in the input format
of VerCors [9,11], a state-of-the-art deductive verifier. Keywords requires,
ensures, and context indicate preconditions, postconditions, and method
invariants, respectively. For instance, the pre/postconditions in Fig. 1a and
Fig. 1c correspond to lines 5–6 in Fig. 1b and lines 47–48 in Fig. 1d. Further-
more, an assertion of the form Perm(x,q) in Fig. 1d indicates the permission
to write to variable x (q= 1) or to read from it (q < 1). That is, x 7→ v in
Fig. 1c is written as the conjunction of Perm(x,1) and x == v in Fig. 1d.
We organised the code in Fig. 1d differently from the code in Fig. 1c, as
VerCors does not support such barriers. Instead we implemented a custom
channel to transfer data/ownership between threads (lines 39–40), using
VerCors’s locking mechanism. The lock invariant (lines 4–8) specifies what
is assumed upon acquiring, and asserted upon releasing, an object’s lock.

Open problem. Based on Fig. 1, we make two observations:

– Fig. 1a and Fig. 1b show that deductive verification of simple sequential
programs is simple (i.e., relatively little effort to annotate).

– However, Fig. 1c and Fig. 1d show that deductive verification of correspond-
ing parallel programs is surprisingly hard (i.e., relatively big effort).
Moreover, while VerCors automatically checks the truth of the annotations
(advantage relative to pen-and-paper proofs), manually writing these an-
notations can be burdensome, as seen by comparing Fig. 1c and Fig. 1d.
Specifically, the “local” pre/postconditions of the “left thread” in Fig. 1c
are more concise than those for method run in class Thread in Fig. 1d.

Thus, in existing approaches, verification of parallel programs is substantially
more laborious than that of sequential programs; already in theory, using pen and
paper, but—paradoxically—sometimes more so in practice, using tool support.
We illustrate these findings with the simplest non-trivial example we could think
of. This problem is only aggravated as the complexity of the programs increases.

Essentially, the reason why annotations of parallel programs are complicated,
is because synchronisation (of data accesses/mutations) among threads needs to
be specified explicitly with permissions. This is already non-trivial when using
the high-level barrier in Fig. 1c (writing the barrier contract); getting synchroni-
sation among threads right costs even more intellectual effort when we are forced
to implement the custom channels in Fig. 1d using lower-level locks (VerCors
does not have such built-in barriers). In the sequential programs in Fig. 1a and
Fig. 1b, we need not worry about synchronisation among threads at all; this is
the level of simplicity that VeyMont aims to provide (e.g., we added support in
VeyMont to auto-generate permissions, so the user needs not write them).
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Contributions Existing methods (e.g., [12, 15, 22, 23, 29, 39, 41, 42]) and tools
(e.g. [11,27,52]) for deductive verification of parallel programs have this workflow:

Step 1: Parallelise a sequential program.
(Or write a parallel program from scratch.)

Step 2: Verify it.

However, step 2 requires significant extra, and non-trivial, annotation effort. As
demonstrated above, this makes deductive verification of parallel programs much
harder than that of sequential programs. To address this issue, we are developing
a new method and tool that have an “inverted workflow”:

Step 1: Verify a sequential-ish program. Step 2: Parallelise it.

The idea behind sequential-ish programs is that they have sequential syntax
and sequential axiomatic semantics (i.e., proof system), but parallel operational
semantics. That is, they look and feel as sequential programs, but they are run
as parallel programs. More concretely, the user uses Hoare logic to annotate
a sequential-ish program Pseq—without worrying about synchronisation—after
which a functionally correct, deadlock-free parallel program Ppar is generated:

– “Functionally correct” means that if the precondition of Pseq holds in the
initial state of Ppar, then the postcondition of Pseq holds in the final state of
Ppar (i.e., functional correctness of Pseq is preserved in Ppar).

– “Deadlock free” means that threads do not get stuck waiting on each other,
e.g. because two threads are both reading from a channel but expect the
other thread to write. No additional manual annotations are needed.

In a previous paper [30], we presented the theoretical foundations of this
new method and its “inverted workflow”, targetting coarse-grained parallelism
among threads (inspired by distributed systems). In this paper, we present the
first deductive verification tool that supports it. The novel contributions are:

1. We designed and implemented VeyMont: it accepts an annotated sequential-
ish program as input and offers a functionally correct, deadlock-free parallel
program in Java as output. Sect. 2 and Sect. 3 provide an overview of the
workflow and features of VeyMont, by example; Sect. 4 contains details.

2. We evaluated VeyMont along two dimensions. As case studies in applica-
bility, we used VeyMont to verify and parallelise sequential-ish versions of
distributed algorithms. As case studies in efficiency, we used VeyMont to
produce parallel programs in Java that have comparable performance to
third-party reference implementations. Sect. 5 describes our findings.

The artifact for reproducing the experiments of this paper is available at [51].

Related work. Existing tools for deductive verification of parallel programs in-
clude Frama-C [5], KeY-ABS [20], VeriFast [27], and Gobra [52]. However, these
tools verify parallel programs, whereas VeyMont parallelises verified programs.
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Step 0:

Write
annotated

sequential-ish
program

Step 1a:

Check
par’able
structure

Step 1b:

Annotate to
check par’able

behaviour

Step 1c:

Check
truth of

annotations

Step 2:

Parallelise
program

Step 1: Verify program

Pseq Ppar

User (manual) VeyMont (automatic)

Fig. 2: “Inverted workflow” using VeyMont

The “inverted workflow”—verify first, parallelise second—of the method sup-
ported by VeyMont is strongly inspired by the methods of choreographic pro-
grams [17, 18] and multiparty session types [24] for construction/analysis of
deadlock-free distributed systems. The idea behind those methods is: first, to im-
plement/specify distributed systems as choreographies/global types (cf. sequen-
tial-ish programs); second, to generate sets of processes/local types (cf. parallel
programs with threads) that are formally guaranteed to be deadlock-free. Ex-
isting tools that support these methods include Chor [17], Scribble [25] and its
dialects [19,35,36,46], Pabble [37], and ParTypes [34]. However, these tools offer
deadlock freedom, but not functional correctness; VeyMont offers both.

The literature on parallelising compilers that target fine-grained parallelism
among tasks is rich (e.g., loop parallelisation [2,13,16,33,38,49]) and goes back
to the 1970s [31]. In contrast, VeyMont is a parallelising verifier that targets
coarse-grained parallelism among threads (i.e., whole-program parallelisation).
We discuss the integration of fine-grained parallelism into VeyMont in Sect. 6.

2 Overview of VeyMont – The “Inverted Workflow”

Fig. 2 visualises the “inverted workflow” of the method supported by VeyMont.

Step 0: The user writes a sequential-ish program Pseq in VeyMont’s input lan-
guage µPVL (core fragment of VerCors’s language PVL [50]). This is a program-
ming/assertion language that combines object-oriented sequential programs with
Hoare logic assertions (similar to sequential Java, enriched with JML [32]).

For instance, Fig. 3a shows a sequential-ish program in µPVL (cf. Fig. 1d). It
is split into two parts: fields s1 and s2 of class SeqProgram define the data (lines
1–12), while method run defines the sequence of operations (lines 16–21). The
precondition of run is trivial (line 13); the postcondition uses the \old predicate
for the old values of s1.v and s2.v at the start of run (lines 14–15). As s1.v and
s2.v are initialised to x and y (lines 12–13), which are free program arguments
(line 9), all possible initial values of s1.v and s2.v are quantified over.

Step 1a: VeyMont checks whether or not Pseq has a parallelisable (“par’able”)
structure. This is a set of syntactic conditions, beyond µPVL’s grammar, that
Pseq must meet to be able to generate a grammatical parallel program (step 2).
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1 class Storage { // The name of this class is
2 int v, temp; // specifically chosen to
3 Storage(int v) { // clarify VeyMont. Generally,
4 this.v = v; // it can be anything.
5 } }
6

7 class SeqProgram { // The name of this class is
8 Storage s1 , s2; // always mandatory (Sect. 4).
9 SeqProgram(int x, int y) {

10 s1 = new Storage(x);
11 s2 = new Storage(y);
12 }

13 requires true;
14 ensures s1.v == \old(s2.v);
15 ensures s2.v == \old(s1.v);
16 void run() {
17 s1.temp = s1.v;
18 s2.temp = s2.v;
19 s1.v = s2.temp;
20 s2.v = s1.temp;
21 } }

(a) Sequential-ish program in µPVL – input

1 class s1Thread extends Thread {
2 Storage s1;
3 IntegerChannel s1_s2;
4 IntegerChannel s2_s1;
5

6 s1Thread(int x,
7 IntegerChannel s1_s2 ,
8 IntegerChannel s2_s1) {
9

10 s1 = new Storage(x);
11 s1_s2 = s1_s2;
12 s2_s1 = s2_s1;
13 }
14

15 public void run() {
16 s1.temp = s1.v;
17 s1.v = s2_s1.read ();
18 s1_s2.write(s1.temp);
19 } }

20 class s2Thread extends Thread {
21

22 ... // similar to lines 2-13
23

24 public void run() {
25 s2.temp = s2.v;
26 s2_s1.write(s2.temp);
27 s2.v = s1_s2.read ();
28 } }
29

30 class ParProgram {
31 ParProgram(int x, int y) {
32 IntegerChannel s1_s2 = ...;
33 IntegerChannel s2_s1 = ...;
34 new s1Thread(
35 x, s1_s2 , s2_s1).start ();
36 new s2Thread(
37 y, s1_s2 , s2_s1).start ();
38 } }

(b) Parallel program in Java, excerpt – output

Fig. 3: Example of VeyMont (swapping values)

Step 1b: VeyMont generates annotations for Pseq—in addition to those the user
has written in step 0—to be able to check that it has parallelisable behaviour
(step 1c). This is a set of semantic conditions, encoded as logic assertions, that
Pseq must meet to guarantee that functional correctness of Pseq will be preserved.

Step 1c: VeyMont checks the truth of the annotations in Pseq, using the state-
of-the-art VerCors–Viper–Z3 tool stack [9, 11]. If so, Pseq is guaranteed to be
functionally correct (the user’s annotations; step 0), functional correctness is
guaranteed to be preserved through parallelisation (VeyMont’s annotations; step
1b), and parallelisation does not introduce deadlocks.

Step 2: VeyMont generates a parallel program Ppar in Java. Step 1a guaran-
tees that Pseq is parallelisable; steps 1b–1c and the theoretical foundations of
VeyMont guarantee that Ppar is functionally correct and deadlock-free [30].

For instance, Fig. 3b shows an excerpt of the parallel program generated for
the sequential-ish program in Fig. 3a. The idea is to parallelise coarse-grained,
at the level of granularity of top-level fields. For every field f ∈ {s1, s2} of class
SeqProgram in Fig. 3a, there is a corresponding subclass fThread of class Thread
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1 class Player {
2 int m, n;
3 int [][] grid;
4 Move move;
5

6 ...
7

8 ensures (\ forall int i = 0..m;
9 (\ forall int j = 0..n;

10 grid[i][j] == 0));
11 ensures ...
12 Player(int m, int n, ...) {
13 this.grid = new int[m][n];
14 ...
15 }
16

17 requires ...
18 ensures 0 <= move.x && move.x < m;
19 ensures 0 <= move.y && move.y < n;
20 ensures grid[move.x][move.y] == 0;
21 ensures ...
22 void think ();
23

24 requires ...
25 requires 0 <= move.x && move.x < m;
26 requires 0 <= move.y && move.y < n;
27 requires grid[move.x][move.y] == 0;
28 ensures ...
29 void play ();
30 }

31 class Move {
32 int x, y, t;
33 ...
34 }

35 class SeqProgram {
36 Player p1, p2;
37

38 ...
39

40 ensures eq_grids(p1 , p2);
41 SeqProgram(int m, int n) {
42 p1 = new Player(m, n, ...);
43 p2 = new Player(m, n, ...);
44 }
45

46 context eq_grids(p1 , p2);
47 void turn1() {
48 p1.think ();
49 p1.play ();
50 p2.think (); // in the background
51 p2.move = p1.move.clone ();
52 p2.play (); // to update
53 }
54

55 ...
56

57 context eq_grids(p1 , p2);
58 void run() {
59 loop_invariant eq_grids(p1, p2);
60 while (p1.inPlay && p2.inPlay) {
61 turn1 ();
62 if (p1.inPlay && p2.inPlay) {
63 turn2 ();
64 } } } }

Fig. 4: Another example of VeyMont (tic–tac–toe on an arbitrary m×n grid)

in Fig. 3b (which defines a Java thread); this subclass alone is responsible for
managing the data of f and performing its operations in class ParProgram.

fThread has three fields: the Storage that it is responsible for, and Channels
to explicitly transfer data between Storages. Meanwhile, method run of fThread
defines the operations that it needs to perform, derived from method run of class
SeqProgram: if only f occurs in an assignment in run of SeqProgram, then the
assignment is copied into run of fThread, verbatim (e.g., line 17 in Fig. 3a, line
16 in Fig. 3b); alternatively, if also g ∈ {s1, s2} \ {f} occurs in the assignment,
then an explicit data transfer between Storages is introduced (i.e., fThread is
forbidden to use data of gThread directly). Transfers are synchronous: method
read blocks until method write is called, and vice versa. In this way, Channels
are an alternative synchronisation mechanism to the barrier in Fig. 1c.

Generally, explicit data transfers are the only form of synchronisation that
VeyMont needs to introduce to guarantee functional correctness (given step 1c).
Specifically, the values of s1.v and s2.v are swapped in run of ParProgram, just
as asserted by the postcondition of run of SeqProgram. Finally, we note that
ParProgram really is parallel: lines 16 and 25 can be executed simultaneously.

3 Overview of VeyMont – More Features

To demonstrate some more features of µPVL/VeyMont, Fig. 4 shows an excerpt
of another sequential-ish program in µPVL. Two threads—implicitly declared in
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top-level fields p1 and p2 of class SeqProgram—take turns to simulate a game of
tic–tac–toe on an arbitrary m×n grid (i.e., beyond 3×3, all possible grid sizes are
quantified over). Each thread has its own copy of the grid; when a move is made,
the active thread informs the passive thread accordingly, so the passive thread
can update its grid to match. In the active thread’s turn, the passive thread can
“think ahead” to ponder its next move. This makes the program really parallel.

We highlight the noteworthy features, as supported by µPVL/VeyMont:

– Turing completeness: Method run of class SeqProgram shows that µPVL
has if/while-statements. This is actually significant: automatically parallelis-
ing the conditions of if/while-statements, while guaranteeing functional cor-
rectness and deadlock freedom, has been a key challenge in developing Vey-
Mont’s theoretical foundations [30]. It is also a reason why VeyMont needs to
check if a sequential-ish program has parallelisable behaviour in steps 1b–1c.

– Data structures: The fields of class Player show that µPVL/VeyMont has
multidimensional arrays (field grid) and nesting of classes (field move).

– Trusted code: Methods think and play of class Player show that µPVL/
VeyMont has abstract methods: they have a specification (precondition and
postcondition), but no implementation (method body). This allows the user
to integrate external trusted code into parallel programs generated by Vey-
Mont. If the trusted code truly implements the specification (proved using
VeyMont, or proved using a different tool, or estimated with code reviews,
etc.), then functional correctness and deadlock freedom are guaranteed.

An excerpt of the parallelisation generated by VeyMont appears in Sect. A.

4 Design & Implementation

VeyMont has five main components, each of which enables a (sub)step in Fig. 2.

4.1 Parser (Step 1a)

The first main component of step 1a is a parser for µPVL. It accepts sequential-
ish programs that comply with the grammar in Fig. 5. We split the grammar into
an “external fragment” and an “internal fragment”. The difference is that the
internal fragment supports more complicated assertions, which the user should
never write manually; instead, they are always inserted by VeyMont automati-
cally (step 1b; Sect. 4.4). Regarding the external fragment:

– Basic notation: Let n range over class names, f over field names, m over
method names, and x over variable names. We write �̃ to mean a list of �s.

– Programs, classes, fields, methods, annotations: A program P consists
of a list of classes. A class C consists of a name, a list of fields, and a list
of methods, including a constructor that has the same name as the class. A
method M consists of a list of annotations (contract), a list of variable names
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P ::= C̃

C ::= class n { F̃ M̃ }

F ::= f

M ::= Ã m(x̃) { S̃ }
∣∣

Ã m(x̃)

A ::= requires B;
∣∣

ensures B;
∣∣

context B;

S ::= assert B;
∣∣ X = E;

∣∣ E.m(Ẽ);
∣∣

if (B) { S̃1 } else { S̃2 }
∣∣

loop_invariant B1; while (B2) { S̃ }

X ::= x
∣∣ f ∣∣ this.f

∣∣ X.f
∣∣ X[E]

E ::= X
∣∣ this

∣∣ null
∣∣ B ∣∣ 0

∣∣ 1
∣∣ E1 + E2

∣∣ · · · ∣∣
new n(Ẽ)

∣∣ E.f
∣∣ E.m(Ẽ)

∣∣ new [E]
∣∣ E1[E2]

B ::= true
∣∣ false

∣∣ !B
∣∣ B1 && B2

∣∣ B1 ==> B2

∣∣
(\forall x = E1..E2; B)

∣∣ E1 == E2

∣∣ · · ·
(a) External fragment, for the user in step 0

B ::= · · ·
∣∣ Perm(X,q)

∣∣ B1 ** B2

∣∣ (\forall* x = E1..E2; B)

(b) Internal fragment, for VeyMont in step 1b

Fig. 5: Grammar of µPVL (types omitted for simplicity)

(formal parameters), and an optional list of statements (body). A method
without a body is abstract (for external trusted code). An annotation A is
a precondition, a postcondition, or a method invariant.

– Statements, variables, expressions: A statement S is an assertion, an
assignment, a method call, a conditional choice, or a conditional loop. A
variable X is a variable name, a (qualified) field name, or a (qualified) ar-
ray cell. An expression E is a variable, a self reference, a null reference, a
Boolean expression, a primitive value/operation, an object constructor call/
field access/method call, or an array constructor call/cell access. In Boolean
expressions, light grey shading indicates that implication and quantification
can be used only in annotations, assertions, and loop invariants.

Regarding the internal fragment, let q range over “fractions” between 0 (ex-
clusive) and 1 (inclusive). Effectively, the grammar of Boolean expressions in
Fig. 5a is extended to the grammar of permission-based, concurrent separation
logic [12, 14] in Fig. 5b to support ownership-like assertions for mutable data.
That is, Perm(X,q) indicates that an annotated piece of code has read permis-
sion for X (if 0<q< 1) or read+write permission (if q= 1); the sum of different
fractions for the same variable can never exceed 1. Operators ** and \forall*

are the standard separating conjunction and separating quantification in separa-
tion logic [40,45]. Regarding notation, requires Perm(X1,q1) ** Perm(X2,q2);

is equivalent to requires Perm(X1,q1); requires Perm(X2,q2);.

Remark 1. µPVL is also statically typed, but as type checking is not a contri-
bution of this paper, we omit types to keep the presentation of µPVL concise.

4.2 Linter (Step 1a)

The second main component of step 1a is a linter. It checks if Pseq has a paral-
lelisable structure. This is needed for applying the transformation rules in step
2 (Sect. 4.5). The linter checks the following syntactic conditions:
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1. Pseq has a class SeqProgram that consists of k fields (f1, . . . , fk), a construc-
tor (m1), a main method run (m2), and any auxiliary methods (m3, . . . ,ml).
All fields are instances of classes; all methods (except the constructor) are
parameterless and non-recursive. The constructor initialises all fields.

2. For every assignment in m2, . . . ,ml: (a) the left-hand side is of the form fi.X;
(b) at most one field fj occurs in the right-hand side. For instance, s1.x = 5

and s2.y = s1.x + 4 and s1.a.b.c = 5 are fine; s1.x = s1.x + s2.y is not.

3. For every if/while-statement in m2, . . . ,ml: (a) the condition is of the form
E1 && ... && Ek; (b) fi is the only field that occurs in every Ei. For instance,
s1.x == 5 && s2.y == 9 is fine; s1.x + 4 == s2.y is not.

4. For every method call on field fi in m2, . . . ,ml: fi is the only field that occurs
in the arguments. For instance, s1.foo(s1.x) is fine; s1.foo(s2.y) is not.

These syntactic conditions constrain only class SeqProgram (i.e., structural par-
allelisability depends only on SeqProgram). Other classes in Pseq are unrestricted.

Remark 2. In our experience (e.g., Sect. 5), conditions 1–4 are straightforward
to meet. Notably, many potential violations can be fixed using auxiliary fields.
For instance, s1.x = s1.x + s2.y violates condition 2, but it can be rewritten to
s1._y = s2.y; s1.x = s1.x + s1._y, which is functionally equivalent. Similarly,
if (s1.x + 4 == s2.y) { ... } violates condition 3, but it can be rewritten to:

s1._y = s2.y; s2._x = s1.x; if (E1 && E2) { ... }

with E1 = s1.x + 4 == s1._y and E2 = s2._x + 4 == s2.y. (In these exam-
ples, s1._y and s2._x are fresh.) A complete formal characterisation of the
class of sequential-ish programs that can be rewritten in this way, including a
mechanical procedure to automatically perform the necessary rewrites to meet
the conditions, is still an open problem.

Remark 3. The conditions checked by the linter result from our design decision
to target coarse-grained parallelism (i.e., every top-level field of SeqProgram is
turned into a separate thread in step 2; Sect. 4.5) instead of fine-grained (e.g.,
loop parallelisation). We discuss their combination in Sect. 6.

4.3 Annotator (Step 1b)

The main component of step 1b is an annotator. It inserts additional annotations
into the input program to be able to check if Pseq has parallelisable behaviour
(step 1c; Sect. 4.4), in terms of two properties:

i. Alias freedom. For every piece of mutable data in Pseq (object fields and array
cells), VeyMont inserts ownership-like assertions to specify that it cannot be
aliased. As a result, the threads of Ppar will operate on disjoint fragments of
memory, so data races are avoided.

Example 1. VeyMont amends the constructor of class Storage in Fig. 3:
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sequential-ish → parallel: s1Thread parallel: s2Thread

store s1.x = 5; → s1.x = 5; /* skip */

transfer s2.y = s1.x + 4; → s1_s2.write(s1.x + 4); s2.y = s1_s2.read();

if/while if (s1.x == 5 && → if (s1.x == 5 if (/* skip */

s2.y == 9) { → /* skip */) { s2.y == 9) {

call s1.foo(s1.x); } → s1.foo(s1.x); } /* skip */ }

Fig. 6: Summary of transformation rules for statements, by example

ensures Perm(v,1) ** Perm(temp ,1);
Storage(int v_init) { ... }

VeyMont amends the methods of class SeqProgram, too:

ensures Bown

SeqProgram(int v) { ... }

context Bown

void run() { ... }

where
Bown = Perm(s1, 1) ** Perm(s2, 1) **

Perm(s1.v, 1) ** Perm(s2.v, 1) **

Perm(s1.temp, 1) ** Perm(s2.temp, 1)

The key idea is to assert write permissions of 1, for all data, everywhere. As
the sum of fractional permissions can never exceed 1, there can be no aliases.

ii. Branch unanimity. For every condition of the form E1 && ... && Ek of if/
while-statements in methods m2, . . . ,ml of class SeqProgram, VeyMont in-
serts an assertion of the form E1 == E2 && ... && Ek−1 == Ek (i.e., ∀0≤i<j≤k
Ei == Ej) to specify that, when E1, . . . , Ek are evaluated, they are all equiv-
alent. This implies that the threads of Ppar all choose the same branch.

Example 2. VeyMont amends the while-statement in method run in Fig. 4:

loop_invariant eq_grids(p1, p2);
loop_invariant p1.inPlay == p2.inPlay;
while (p1.inPlay && p2.inPlay) { ... }

Alias freedom and branch unanimity are sufficient to guarantee that functional
correctness is preserved through parallelisation, and that parallelisation does
not introduce deadlocks [30]; we clarify the importance of the latter after having
discussed parallelisation (step 2; Sect. 4.5).

4.4 VerCors (Step 1c)

The main component of step 1c is the VerCors–Viper–Z3 tool stack [9,11] (whose
language, PVL, is a superset of µPVL). To check that Pseq is functionally correct
and has parallelisable behaviour, it verifies the truth of the user’s annotations
(step 0) and VeyMont’s (step 1b).

4.5 Code Generator (Step 2)

The main component of step 2 is a code generator into Java. Non-SeqProgram
classes in Pseq are copied to Ppar, while SeqProgram is parallelised into classes
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1 b.x = a.x;
2 a.y = b.y;
3 if (a.x >= a.y &&
4 b.x <= b.y) {
5 a.z = b.z;
6 } else {
7 b.z = a.z;
8 }

(a) Sequential-ish

1 a_b.write(a.x);
2 a.y = b_a.read ();
3 if (a.x >= a.y
4 /* skip */) {
5 a.z = b_a.read ();
6 } else {
7 a_b.write(a.z);
8 }

(b) Parallel: aThread

1 b.x = a_b.read ();
2 b_a.write(b.y);
3 if (/* skip */
4 b.x <= b.y) {
5 b_a.write(b.z);
6 } else {
7 b.z = a_b.read ();
8 }

(c) Parallel: bThread

Fig. 7: Example of a sequential-ish program whose parallelisation can deadlock.
VeyMont statically detects this and reports an error instead.

f1Thread, . . . , fkThread (each fi is a field of SeqProgram), and class ParProgram
for forking. The methods of each fiThread are derived from methods m2, . . . ,ml

of SeqProgram, by applying the transformations in Fig. 6 to every statement S:

– If S is an assignment, then due to condition 2 of the linter (Sect. 4.2), S
contains the field either of one thread (“store”) or of two threads (“transfer”).
In the former case, S is added to the thread; in the latter case, a write/read
on a Channel are added to the threads. Nothing is added to other threads.

– If S is an if/while-statement, then due to condition 3 of the linter, for every
thread, S contains a corresponding subcondition. An if/while-statement with
exactly that corresponding subcondition is added to every thread.

– If S is a call, then due to condition 4 of the linter, S contains the field of one
thread. S is added to that thread. Nothing is added to other threads.

The theoretical foundations of our method ensure that if steps 1a, 1b, and 1c have
succeeded, then the transformation rules in Fig. 6 indeed result in a functionally
correct, deadlock-free parallel program [30].

Remark 4. To illustrate the importance of branch unanimity (Sect. 4.3) to guar-
antee that parallelisation does not introduce deadlocks, Fig. 7 shows a sequential-
ish program (i.e., the body of method run of class SeqProgram with top-level
fields a and b). This program meets the conditions of the linter, so it has a
parallelisable structure; its parallelisation consists of aThread and bThread.

However, whether or not aThread and bThread can deadlock crucially de-
pends on the initial values of a.x and b.y (intentionally omitted from Fig. 7):

– If a.x and b.y are initially equal, then branch unanimity is satisfied (no dead-
lock): after the first two assignments, a.x >= a.y and b.x <= b.y are both
true. Subsequently, aThread and bThread both enter their then-branches, so
aThread reads and bThread correspondingly writes.
Thus, VeyMont (step 1c) reports no error when a.x == b.y initially.

– If a.x and b.y are initially unequal, then branch unanimity is violated (dead-
lock): a.x >= a.y and b.x <= b.y are either true and false, or false and true.
In the former case, aThread enters its then-branch, but bThread enters its
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else-branch. At this point, aThread and bThread both expect to read, but
neither one of them will write, so they are stuck forever.
Thus, VeyMont (step 1c) reports an error when a.x != b.y initially.

We note that VeyMont guarantees deadlock freedom, but not starvation free-
dom: at any point in time, either all threads have terminated, or at least one
thread is still running, modulo exceptions (e.g., division by zero).

5 Evaluation

Applicability. We used VeyMont to verify and parallelise sequential-ish pro-
grams for three classical distributed algorithms, for various numbers of threads n:

– In two-phase commit (2PC) [47], 1 Client and n−1 Servers cooperate to
fulfil a joint query in a distributed database. First, the Client shares the
query with the Servers. Next, the Servers locally run the query and report
success/failure back to the Client. Only if all Servers succeeded will the Client
instruct them to commit, and otherwise to abort. We successfully verified
that the Clients consistently commit, for n ∈ {3, 5, 8, 12, 17}.

– In anonymous election (probabilistic version of Peleg’s algorithm [43] in the
style of Itai and Rodeh [26]), n symmetric threads try to elect a unique leader
among them. The algorithm proceeds in rounds. In every round, every thread
picks a random number from some fixed range (trusted code) and shares it
with every other thread. If there is a unique highest number, then the thread
that picked it declares itself the leader; otherwise, another round ensues. We
verified that a unique leader is elected upon termination, for n ∈ {3, 5, 8}.

– In consensus [6], n symmetric threads try to reach agreement about a
common value. First, the threads share their locally preferred values. Next,
every thread computes the globally preferred value (by majority); this be-
comes the common value. The complication is that threads can fail : non-
deterministically (abstract methods), they can share the wrong locally pre-
ferred value and/or compute the wrong globally preferred value. We success-
fully verified that all threads set the right globally preferred value when the
number of failures is at most bn/4c, for n ∈ {3, 5}; this is a classical result.

As a proxy of effort, Fig. 8 shows ratios of numbers of annotations (“spec”)
vs. program elements (“impl”). They are below 1; by comparison, Wolf et al. [52]
recently report ratios of 2.69–3.16 to deductively verify parallel programs using
a tool based on traditional methods. This is first evidence that VeyMont indeed
significantly reduces the annotation burden.

Fig. 8 also presents the mean run times (of 30 runs) of VeyMont for step 1c
and in total (using: Intel i7-8569U CPU with 4 physical/4 virtual cores at 2.8
GHz; 16 GB memory). We can make two main observations. First, the run times
are dominated by step 1c (actual verification). For instance, step 1c consumes
6.8
8.0 = 85% of the run time for 2PC (n=3) and as much as 62.2

63.9 = 97% for 2PC
(n=17). Second, parallelisation itself is relatively cheap. For instance, it takes
less than 1.2 seconds for 2PC (n=3) and less than 1.7 seconds for 2PC (n=17).
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spec
impl

1c total

2PC (n=3) 32/75 6.8 8.0
2PC (n=5) 42/91 8.9 10.1
2PC (n=8) 57/115 13.9 15.2
2PC (n=12) 77/147 26.4 27.8
2PC (n=17) 102/187 62.2 63.9

spec
impl

1c total

election (n=3) 22/49 7.2 8.5
election (n=5) 28/69 14.3 16.2
election (n=8) 37/99 61.5 65.4

consensus (n=3) 72/73 9.8 11.3
consensus (n=5) 90/104 41.0 42.5

Fig. 8: Case studies in applicability: ratio of number of annotations vs. program
elements ( spec

impl ) and mean VeyMont run times in seconds (1c, total). Program
elements are: class headers, fields, method headers, and statements.

Efficiency. We compared the performance of VeyMont-generated parallel pro-
grams in Java with third-party reference implementations. Our aim was to study
if the synchronisation mechanism in generated parallel programs is sufficiently
lightweight to be competitive. We use different programs than above, as no third-
party reference implementations were available for 2PC/election/consensus.

We took the following approach. First, we selected two parallel programs from
the CLBG database [1]: binary-trees (parallel tree walk) and k-nucleotide

(parallel pattern matching of molecule sequences against a DNA string). Next,
for each program: (1) we extracted the data sharing patterns among threads in
the CLBG reference implementation and wrote them as a sequential-ish program
in µPVL; (2) we “completed” the sequential-ish program by adding abstract
methods to represent all purely sequential computations; (3) we generated par-
allel programs in Java using VeyMont; (4) we concretised the abstract methods
in Java with trusted sequential CLBG code; (5) we ran the CLBG version and
the VeyMont version to compare performances, using CLBG-standardised in-
put, with various numbers of threads. We note that we did not prove functional
correctness; this is beyond the scope of these performance comparisons.

We ran the resulting executables on three different machines: Cartesius (Intel
E5-2690 v3 CPU with 16 physical cores), MacBook (Intel i7-8569U CPU with 4
physical/4 virtual cores), and VM [28] (1 virtual core). Fig. 9 show our results as
speed-ups of VeyMont versions relative to CLBG versions, computed as µCLBG

µVeyMont
,

where µVeyMont and µCLBG are the mean run times (of 100 runs) of a VeyMont
and a CLBG version; µCLBG

µVeyMont
< 1 means that a VeyMont version was slower.

We can make two main observations. First, although the VeyMont versions
tend to be somewhat slower than the CLBG versions, the slowdown is gener-
ally less than 10%. We conjecture that there is a substantial class of programs
for which a 10% slowdown is a fine price for better verifiability of functional
correctness and deadlock freedom. Second, different machines exhibit different
performance; a deeper study is needed to understand what exactly causes this.
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Fig. 9: Case studies in efficiency: the x-axis indicates the number of threads; the
y-axis indicates the speed-up of VeyMont versions relative to CLBG versions.

6 Future Work

We presented VeyMont: a deductive verification tool that aims to make rea-
soning about functional correctness and deadlock freedom of parallel programs
(relatively complex) as easy as that of sequential programs (relatively simple).

Our most-wanted feature for VeyMont is to support parametrisation (e.g.,
election generically for n threads instead of specifically for 3, 5, 8, . . .). However,
parametrised verification is known to be undecidable in general [3,48]. The study
of this topic (e.g., identification of decidable fragments) has become a research
area of its own over the past decade; the book by Bloem et al. gives an extensive
overview [7, 8]. Thus, an extension of VeyMont to support parametrisation is
highly non-trivial. It is our main direction for future work.

Other future work pertains to a relaxation of alias freedom and branch una-
nimity in the theoretical foundations of VeyMont [30]. Such a relaxation allows
VeyMont to be more flexible about read/write permissions (e.g., improve support
for read-only shared arrays), but maintaining the same strong guarantees.

Inspired by methods for distributed systems, VeyMont targets coarse-grained
parallelism among threads (i.e., whole-program parallelisation) instead of fine-
grained parallelism among tasks (e.g., loop parallelisation). We are keen to ex-
plore the combination of both approaches. A first step would be to mix VeyMont
with the VerCors-based work of Blom et al. [10] on verification of loop paralleli-
sation. Beyond that, it is interesting to extend VeyMont with complementary
techniques. For instance, Raza et al. [44] developed a technique to infer depen-
dencies among statements in sequential programs to allow their parallel exe-
cution (like us), but at the level of tasks (unlike us). Their technique and ours
have different strengths: we can split the conditions of if/while-statements across
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separate threads, which Raza et al. cannot (they assume indivisible conditions);
conversely, Raza et al. can parallelise recursive divide-and-conquer algorithms in
separate tasks, which we cannot (we assume fixed numbers of processes).

Finally, more on the engineering side, we are also keen to investigate to what
extent alternative deductive verification back-ends instead of VerCors can offer
value both to users (e.g., faster verification) and to researchers (i.e., in principle,
any deductive verification tool for sequential programs can be combined with
VeyMont’s method to reason about functional correctness of parallel programs).

A Appendix: Parallelisation of Tic-Tac-Toe

The following listing shows the two threads for top-level fields p1 and p2 in the
parallelisation of the sequential-ish program in Fig. 4, generated by VeyMont
(functionally correct and deadlock-free). We note that p1Thread and p2Thread

have “opposite” behaviour in their methods turn1 and turn2.

1 class p1Thread extends Thread {
2 Player p1;
3 MoveChannel p1_p2;
4 MoveChannel p2_p1;
5

6 p1Thread(int m, int n,
7 MoveChannel p1_p2 ,
8 MoveChannel p2_p1) {
9

10 this.p1 = new Player(m, n, ...);
11 this.p1_p2 = p1_p2;
12 this.p2_p1 = p2_p1;
13 }
14

15 void turn1() {
16 p1.think ();
17 p1.play ();
18 p1_p2.write(p1.move.clone ());
19 }
20

21 void turn2() {
22 p1.think (); // in the background
23 p1.move = p2_p1.read ();
24 p1.play (); // to update
25 }
26

27 public void run() {
28 while(p1.inPlay) {
29 turn1 ();
30 if (p1.inPlay) {
31 turn2 ();
32 } } } }

33 class p2Thread extends Thread {
34 Player p2;
35 MoveChannel p1_p2;
36 MoveChannel p2_p1;
37

38 p2Thread(int m, int n,
39 MoveChannel p1_p2 ,
40 MoveChannel p2_p1) {
41

42 this.p2 = new Player(m, n, ...);
43 this.p1_p2 = p1_p2;
44 this.p2_p1 = p2_p1;
45 }
46

47 void turn1() {
48 p2.think (); // in the background
49 p2.move = p1_p2.read ();
50 p2.play (); // to update
51 }
52

53 void turn2() {
54 p2.think ();
55 p2.play ();
56 p2_p1.write(p2.move.clone ());
57 }
58

59 public void run() {
60 while(p2.inPlay ){
61 turn1 ();
62 if (p2.inPlay) {
63 turn2 ();
64 } } } }

The remaining classes that are part of the parallelisation are:

– ParProgram: This class is responsible for creating channels and starting the
threads. It is very similar to class ParProgram in Fig. 3b

– Player, Move: These classes are straightforward Java versions of the µPVL
versions in Fig. 4.
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