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Abstract. Service-oriented architecture (SOA) is a popular architec-
tural style centered around services, loose coupling, and interoperability.
A recurring problem in SOA development is the Button Problem; how to
ensure that whenever a “button is pressed” on some service—no matter
what—the performance of other key services remains unaffected? The
Button Problem is especially complex to solve in systems that have de-
volved into hardly comprehensible spaghettis of service dependencies.
In a collaborative effort with industry partner First8, we present the first
formal framework to help SOA developers solve the Button Problem,
enabling automated reasoning about service sensitivities and candidate
refactorings. Our formalization provides a rigorous foundation for a tool
that was already successfully evaluated in industrial case studies, and it is
built against two unique requirements: “whiteboard level of abstraction”
and non-quantitative analysis.

1 Introduction

Context. Service-oriented architecture (SOA) is a popular architectural style
centered around services, loose coupling, and interoperability [19].

A recurring problem in SOA development is the Button Problem: how to en-
sure that whenever a “button is pressed” (i.e., an operation is invoked; a resource
is requested) on some service—no matter what—the performance of other key
services remains unaffected? For instance, increased activity on an accounting
service of an e-commerce system should never slow down the front-end service;
sales are lost otherwise [1]. The Button Problem occurs in all stages of SOA
development, from initial analysis (when dependencies among services are still
reasonably well-understood) to final maintenance (when dependencies have often
devolved into a hardly comprehensible spaghetti).

To solve the Button Problem, SOA developers need to engage in two kinds
of activities: (1) they need to analyze dependencies among services to determine
whether or not a service is indeed sensitive to button-presses on other services; if
so, (2) they need to invent a series of refactorings that eliminate the sensitivity,
but without changing the system’s functional behavior. Especially in cases where
services and their dependencies are plentiful, these two activities are challenging
to carry out by hand: both service sensitivities and candidate refactorings are
easily missed, leading to suboptimal architecture and deployment decisions.
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Contribution. In a collaborative effort with industry partner First8, we present
the first formal framework to help SOA developers solve the Button Problem, en-
abling automated reasoning about service sensitivities and candidate refactorings
in the form of tool support. Our formalization is built against two unique require-
ments derived from First8’s experience with large enterprise systems (Sect. 2):
“whiteboard level of abstraction” and non-quantitative analysis. We provide an
extensible core library of refactorings and prove their correctness; this facilitates
mechanical exploration of a system’s design space toward given insensitivity
goals. Our formalization provides a rigorous foundation for a decision support
tool (Sect. 2) that we developed and recently demonstrated at ICSOC 2018 [16].

In Sect. 2, we explain the background of this research project. In Sect. 3,
we present our formalization of architectures and refactorings. In Sect. 4, we
present our formalization of deployments and sensitivities. In Sect. 5, we explain
the implementation of our formal framework. In Sect. 6, we discuss related work
and future work. Proofs of theorems appear in a separate technical report [9].

2 Background

First8. First8 (https://www.first8.nl), subsidiary of Conclusion (https://www.
conclusion.nl), is a software company specialized in custom business-critical
systems, including SOA, in all stages of the software life cycle. SOA developers
at First8 regularly encounter and struggle with the Button Problem. In gen-
eral, the industry-wide practice of manually reasoning about service sensitivities
and candidate refactorings has three major issues. First, it is an intellectually
demanding activity that often requires SOA developers to make simplifying as-
sumptions. This leads to imprecise refactoring proposals, which may be more
costly, more risky, and less effective than necessary. Second, as refactoring pro-
posals are based on experience and best-practices, SOA developers can easily
overlook less-intuitive refactorings that may well be most-effective for a given
system. Third, predicting how multiple refactorings will affect each other is hard.

The aim of this research project is to develop a decision support tool (open
source), built on top of a rigorous foundation, that helps SOA developers (First8
or otherwise) solve the Button Problem. Based on extensive experience with
large enterprise systems, First8 imposed two unique requirements on the tool
and its underlying formalization that give our project a novel position among
existing computer-aided software engineering tools (see also Sect. 6):

– “Whiteboard level of abstraction”: Finding a technical solution to the
Button Problem is one thing; convincing business executives that this solu-
tion is truly worth pursuing and implementing is a whole different challenge.
Decisions are often made in meetings where there is neither time nor exper-
tise on the executives’ side to go through all the technical intricacies; instead,
high-level whiteboard drawings are the main artifacts to explain service sen-
sitivities and candidate refactorings, their consequences, and their trade-offs.
To truly contribute to executives’ decision-making, it is therefore imperative

https://www.first8.nl
https://www.conclusion.nl
https://www.conclusion.nl
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that our tool and its foundation are based on the simple whiteboard-style
notation that executives intuitively understand and are accustomed to.

– Non-quantitative analysis: Ultimately, every Button Problem is about
coarse-grained predictability of performance; it is never about reducing la-
tency by x milliseconds, or increasing throughput by y transactions per
hour. Although it is possible to try to solve the Button Problem using fine-
grained quantitative approaches in terms of absolute latencies and through-
puts (e.g., [3,5,13,15,22]), it is excessive (i.e., not the right tool for the job)
and impractical. One issue is collecting the measurements to instantiate a
quantitative model, which can be cumbersome or even impossible (i.e., if
the system has not been deployed yet). Another issue is that measurements
are implementation-specific and deployment-specific, and therefore brittle:
changes in a service implementation or deployment can greatly impact ab-
solute performance and immediately render a previously instantiated quan-
titative model obsolete. To solve the Button Problem effectively, using au-
tomated tool support, a non-quantitative approach is needed.

The Elmo tool. Elmo is the decision support tool that is developed in this re-
search project (open source; https://bitbucket.org/arjanl/elmo-tool), recently
demonstrated at ICSOC 2018 [16,10] and built on top of the formalization pre-
sented in this paper. Leveraging a whiteboard-style notation for architectures
and deployments, Elmo’s main features are (1) automated non-quantitative anal-
ysis of service sensitivities and (2) automated inference of series of candidate
refactorings that are guaranteed to be behavior-preserving and achieve given in-
sensitivity goals. If multiple different series of candidate refactorings achieve the
specified goals, Elmo automatically computes a comparison of other attributes
of the final system designs for the user to inspect. Moreover, Elmo also supports
an interactive mode that enables users to manually explore a system’s design
space by selecting and applying candidate refactorings from a list. (Elmo does
not actually carry out refactorings, though; the tool is geared toward providing
decision support to solve the Button Problem.)

We successfully evaluated Elmo in two case studies involving systems of First8
clients that suffer(ed) from the Button Problem:

1. In an e-commerce system at an undisclosed client, performance issues arose in
key services when the load on seemingly unrelated services increased. First8
was consulted to solve this Button Problem, but Elmo did not yet exist at the
time. Due to the sheer size and complexity of the system, the SOA developers
involved ultimately proposed a broad, coarse-grained refactoring approach
that affected the whole system; they were unable to manually find a more
targeted series of refactorings to solve the problem more locally. The project
revealed the need for a decision support tool to deal with this complexity.
Recently, we modeled the system in Elmo and automatically found a much
more localized series of refactorings that achieves the same goals. Moreover,
SOA developers that worked on the project are of the opinion that if Elmo
had existed at the time of the project, this would have resulted in perfor-
mance improvements much earlier in the process and with more confidence.

https://bitbucket.org/arjanl/elmo-tool
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2. JoinData is a digital highway for farm-generated data, used nation-wide in
the Netherlands. It allows for data exchange in the agricultural sector. For ex-
ample, milking-robots on the farm, animal feed suppliers, or soil laboratories
can exchange information with accountancy firms, governmental organisa-
tions, or farm management systems. Due to expected growth, the scalability
of the messaging component, called EDI-Circle, needed to improve by solving
the Button Problem of one of its constituent services.
We compared (i) the manual analysis and proposed course of action by the
lead architect of EDI-Circle with (ii) Elmo’s automated analysis. Whereas
the architect proposed “to change the whole system, since everything is con-
nected”, Elmo proposed a much more localized series of refactorings.

Details of case study 1 are protected by NDA; details of case study 2 are in [16].
In the rest of this paper, we present the rigorous foundation on top of which

Elmo is built. We shall formalize systems at the abstraction level of their ar-
chitectures and deployments. Refactorings are subsequently defined over formal
architecture models; sensitivities are derived from formal deployment models.

3 Architectures & Refactorings

3.1 Architecture Models

Our formalization of architectures closely follows the proven whiteboard-style no-
tation used by First8’s SOA developers to effectively communicate with clients
and business executives. The notation comprises graphical diagrams where ser-
vices are drawn as nodes and calls between services as edges. Services are an-
notated with the types of information they produce and consume. Calls come in
two flavors: pushes and pulls. A push by service s1 to service s2 entails a single
communication from s1 to s2 (there is no subsequent acknowledgment from s2
to s11); a pull by s1 from s2 entails a request for information from s1 to s2, and a
subsequent response from s2 to s1. We formalize these diagrams as architecture
models. Let S denote the set of all services, ranged over by s, and let T denote
the set of all types of information, ranged over by t.

Definition 1. An architecture model A is a tuple (S, T,Π, Γ, , ) where:

– S ⊆ S and T ⊆ T denote sets of services and types;
– Π,Γ : T → 2S denote indexed sets of producers and consumers;
– , : T → 2S×S denote indexed push and pull relations such that

(s1, s2) ∈ (t) implies s1 6= s2, and (s1, s2) ∈ (t) implies s1 6= s2.

Arch denotes the set of all architecture models.
1 In terms of the Osi transport layer, Tcp/Ip packets involved in a push are acknowl-
edged (as part of the Tcp/Ip protocol), but this is at a lower level of abstraction.
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Fig. 1: Example architecture model
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Fig. 2: Example directions/initiatives

In words, s ∈ Π(t) and s ∈ Γ (t) mean that service s respectively produces and
consumes information of type t (the utility of these sets becomes clear when we
define well-formedness, shortly); we write Πt and Γ t instead of Π(t) and Γ (t).
In words, (s1, s2) ∈ (t) and (s1, s2) ∈ (t) mean that service s1 respectively
pushes and pulls information of type t to and from service s2; we write s1

t
s2

and s1
t
s2 instead of (s1, s2) ∈ (t) and (s1, s2) ∈ (t). The domain of

an architecture model A is its set of services, denoted by Dom(A).

Example 1. Figure 1 shows an architecture model for a webshop system; it is a
simplified version of the e-commerce system discussed in Sect. 2.

The database service, called db, manages information about products and or-
ders. The front-end service, called chkout , is used by customers to order products;
it calls the database service to pull product information and push new orders,
while it pulls from a pricing service, called price, for calculating final prices (in-
cluding additional fees and transport costs). The accounting service, called acc,
checks if orders have been paid for; it calls the database service to pull order
information. Finally, the back-office service, called office, maintains the product
catalog; it calls the database service to push updated product information.

We note that we distinguish between new order/product information (nprod
and norder), produced by chkout/office, and existing order/product information
(prod and order), produced (i.e., “owned”) by db. ut

Architecture models (Defn. 1) specify precisely the direction (i.e., from pusher
to “pushee”, but from “pullee” to puller) and the initiative (i.e., pushers and
pullers; services that start information flows) of information flows; they abstract
from call specifics (e.g., operations that are invoked; resources that are accessed),
quantitative aspects of communication (e.g., call frequencies; latency; through-
put), and transport characteristics (e.g., synchronous vs. asynchronous; reliable
vs. lossy; unordered vs. order-preserving). Direction and initiative serve key pur-
poses in our work: in this section, we use direction to reason about candidate
refactorings; in the next section, we use initiative to reason about service sensi-
tivities. We elicit these notions formally as follows. Let f1]f2 = {x 7→ f1(x) | x ∈
X1 \ X2} ∪ {x 7→ f2(x) | x ∈ X2 \ X1} ∪ {x 7→ f1(x) ∪ f2(x) | x ∈ X1 ∩ X2}
denote the pointwise union of functions f1 : X1 → 2Y1 and f2 : X2 → 2Y2 .
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∼ ⇒ ∼

A1

(“old”)
Â1

(“new”)
A = A1 ⊕A2 Â = Â1 ⊕A2

Fig. 3: Refactoring framework

Definition 2. , : Arch → (T → 2S×S) denote the (doubly) indexed di-
rection and initiative relations defined by the following equations:

((S, T,Π, Γ, , )) =
{
t 7→ (t) ∪ (t)-1 t ∈ T

}
((S, T,Π, Γ, , )) = ]

In words, (s1, s2) ∈ (A)(t) and (s1, s2) ∈ (A)(t) means that flow of infor-
mation of type t is directed and initiated from service s1 to service s2 in architec-
ture model A; we write s1

t
A s2 and s1

t
A s2 instead of (s1, s2) ∈ (A)(t)

and (s1, s2) ∈ (A)(t). Fig. 2 exemplifies these relations for Fig. 1.
An architecture model is well-formed if every flow of information of type t

starts at a producer of t (i.e., information should not emerge out of nowhere)
and ends at a consumer of t (i.e., information should not be discarded unused).
Formally, if A = (S, T,Π, Γ, , ) and s1

t
A s2, then there exist services

sp and sc such that: Πt 3 sp
t ∗
A s1 and s2

t ∗
A sc ∈ Γ t. Well-formedness is

an important sanity condition that models need to satisfy; it catches modeling
inconsistencies and redundancies regarding information availability (which is also
why producers/consumers are explicit elements of the model and not derived).

3.2 Refactoring Framework

We define a rigorous refactoring framework in terms of composition (⊕) and
equivalence (∼) of architecture models (Fig. 3). The idea is to represent an ar-
chitecture A as the composition of an “old part” A1 and a “remaining part” A2

(formally: A = A1⊕A2). Refactoring, then, amounts to substituting the old part
with an equivalent “new part” Â1 (formally: A1 ∼ Â1). If the equivalence is in
fact a congruence for composition, substitution of equivalent parts is guaranteed
to yield equivalent wholes, which means that all existing information flows are
preserved by substitution and no spurious new ones are introduced. This con-
gruence property is pivotal: because of it, to show that a refactoring is correct,
we need to prove only the equivalence of the old part and the new part, while
we can safely ignore the remaining part. We now explain the details.

To compose architecture models A1 and A2, we “glue” them together on their
shared services; through these services, information can subsequently flow from
A1 to A2 and back, in accordance with the original push and pull relations. Such
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composition of architecture models corresponds roughly to union of graphs with
overlapping vertex sets but disjoint edge sets.

Definition 3. ⊕ : Arch × Arch → Arch denotes the composition function
defined by the following equation:

A1 ⊕A2 = (S1 ∪ S2, T1 ∪ T2, Π1 ]Π2, Γ1 ] Γ2, 1 ] 2, 1 ] 2)
where Ai = (Si, Ti, Πi, Γi, i, i)

The following theorem states that composition of architecture models preserves
the direction of information flows.

Theorem 1. A1⊕A2 = A1 ] A2

Two architecture models are equivalent iff the direction of every flow of in-
formation in the one can be mimicked in the other, including production and
consumption of information, and vice versa. We note that we do not require
mimicry of initiative; the idea is that it does not matter which service initiates
sharing of information, so long as all information reaches the right services.

Definition 4. �,∼ : 2S×S → 2Arch×Arch denote the indexed preorder and
equivalence relations defined by the following equations:

�(R) =

(A, Â)
∣∣∣∣∣∣∣
∀t, s, s′.

[
s

t
A s
′ ⇒ ∃ŝ, ŝ′.

[
ŝ

t
Â ŝ
′ ∧ s R ŝ ∧ s′ R ŝ′

]]
∧ ∀t, s.

[
s ∈ Πt ⇒ ∃ŝ.

[
ŝ ∈ Π̂t ∧ s R ŝ

]]
∧ ∀t, s.

[
s ∈ Γ t ⇒ ∃ŝ.

[
ŝ ∈ Γ̂ t ∧ s R ŝ

]]
∧ A = (S, T,Π, Γ, , ) ∧ Â = (Ŝ, T̂ , Π̂, Γ̂ ,

∼
,
∼

)


∼(R) = �(R) ∩ �(R-1)-1

In words, (A, Â) ∈ �(R) means that relation R associates every service s in
A with a set of services Ŝ = {ŝ | s R ŝ} in Â that collectively2 simulate s
(i.e., every information flow from s to some service s′ in A can be mimicked
as an information flow from some service ŝ ∈ Ŝ to some service ŝ′ in Â; every
information production or consumption by s can be mimicked as an information
production or consumption by some service ŝ ∈ Ŝ). In words, (A, Â) ∈ ∼(R)
means that services in A and in Â simulate each other under the same relation
R. We write A �R Â and A ∼R Â instead of (A, Â) ∈ �(R) and (A, Â) ∈ ∼(R).

Example 2. Figures 4a and 4b show two equivalent architecture models of the
example webshop system (Exmp. 1), before and after refactoring; we discuss
Fig. 4c, the gray boxes around services, and the parenthetical mentioning of
“deployment models” in the caption in Sect. 4.

Architecture model A in Fig. 4a is the original (cf. Fig. 1). Architecture model
Â in Fig. 4b results from “splitting” service db in A into two new services: one that
2 Individual services in Ŝ may contribute only partially to the simulation (see also
Exmp. 2). This is where our definition of simulation differs significantly from the
classical one in concurrency theory (e.g., [17]). It is also why s R ŝ appears as a
conjunct on the right-hand side of the implication instead of on the left-hand side.
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Fig. 4: Equivalent architecture models (and deployment models) of the example
webshop systems before and after refactoring. Blue dashed lines indicate the
simulation relation; sets of producers and consumers are omitted to save space.

stores only product information, and one that stores only order information. To
see that A and Â are equivalent, observe that prod information flows from db to
services chkout and price in A, while prod information flows from service proddb
to chkout and price in Â. Thus, db in A is partially simulated by proddb in Â;
likewise, with respect to order information flows, db in A is partially simulated
by service orderdb in Â. Thus, db in A is collectively simulated by proddb and
orderdb in Â. Similarly, we can argue that Â is simulated by A. ut

Example 3. To further illustrate (the intricacies of) Defn. 4, suppose well-formed
architecture A precisely consists of Πt 3 s t

s′
t
s′′ ∈ Γ t, while well-formed

architecture Â precisely consists of Πt 3 s t
s′a ∈ Γ t and Πt 3 s′b

t
s′′ ∈ Γ t.

These architectures are not equivalent: no relation R exists such that A ∼R Â.
Notably, A 6∼R† Â for R† = {(s, s), (s′, s′a), (s′, s′b), (s′′, s′′)}, because s′a (resp.
s′b) in Â is consumer (resp. producer), but s′ in A is not. Also, A 6∼R‡ Â for
R‡ = {(s, s), (s, s′b), (s′′, s′a), (s′′, s′′)}, because s′ is missing from R‡. This also
shows that well-formedness does not imply production/consumption mimicry.

But, A ∼R† Â does hold after updating A such that s′ ∈ Πt∩Γ t. In that case,
splitting s′ into s′a and s′b means the consumption and production responsibilities
of s′ are divided over two new services; this can be perfectly fine in practice. ut

The following theorem states that the equivalence relation ∼ (Defn. 4) is
a congruence relation for the composition operation ⊕ (Defn. 3). To prove the
theorem, we need additional assumptions beside equivalence of the parts. These
additional assumptions state that after substitution, the services on the “bound-
ary” between the old/new parts and the remaining part (set SB in the theorem)
must be indistinguishable from those before substitution (in terms of their names
and information flows). In other words, the interface must remain the same: ser-
vices on the boundary may not be renamed, added, or removed by a refactoring.
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Fig. 5: Basic instances of example refactorings

Theorem 2.
A1 ∼R1

Â1

∧ SB = Dom(A1) ∩Dom(A2)

∧ SB = Dom(Â1) ∩Dom(A2)

∧ ∀s, ŝ.
[[
s R1 ŝ ∧ s ∈ SB

]
⇒ s = ŝ

]
∧ ∀s, ŝ.

[[
s R1 ŝ ∧ ŝ ∈ SB

]
⇒ s = ŝ

]

 ⇒ ∃R.
[
A1 ⊕A2 ∼R Â1 ⊕A2

]

3.3 Core Library of Refactorings

Now, every refactoring in our framework (Fig. 3) is defined by a predicate–
function pair (P, f): predicate P identifies (sub)architectures that can take on
the role of A1 (the old part), while function f describes the transformation of A1

into Â1 (the new part). An instance of a refactoring, then, is the transformation
of a concrete A1 that satisfies P into Â1 according to f . We call refactoring
(P, f) correct if, for all A1, satisfaction of P by A1 implies that A1 and f(A1)
are equivalent. Subsequently, Thm. 2 ensures that a correct refactoring for A1

can safely be applied in any architecture that contains A1.
We defined a core library of provably correct refactorings: Flip, Split , Merge,

AddQueue, and AddCache. These refactorings were selected to form a minimal
set of primitive building blocks to support our two case studies (Sect. 2); due
to the generality of our framework, the core library can straightforwardly be
extended in future work, by need. Figure 5 shows basic instances of these refac-
torings; notationally, we use a semicolon to distinguish the old architecture to
which a refactoring is applied from additional information that is used to com-
pute the refactoring. Refactoring Flip converts pushes between corresponding
“reverse-pulls” and vice versa. Refactoring Split divides the responsibilities of a
single old service s3 over multiple new services s3a and s3b (practically, such
splitting is usually subject to additional constraints, such as information depen-
dencies, which can be manually added as model annotations in the implementa-
tion; Sect. 5, footnote 4). Dually, refactoring Merge combines the responsibilities
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Let A = (S,Π, Γ, , ). Predicates Flip?, Split?,Merge?,AddQueue?,AddCache?
are the smallest relations induced by the following rules:

Flip?(A)
s ∈ S ∧ s1, s2 /∈ S

Split?(A; s, s1, s2, T1)

S′ ⊆ S ∧ s /∈ S
Merge?(A;S′, s)

s1
t
s2 ∧ s /∈ S

AddQueue?(A; t, s1, s2, s)
s1

t
s2 ∧ s, s′ /∈ S

AddCache?(A; t, s1, s2, s, s′)

Fig. 6: Predicates of refactorings in the core library

of multiple old services s3a and s3b into a single new service s3. Refactoring Add-
Queue introduces a special service sq to replace a push from service s1 to service
s2; the idea is that “producer” s1 now pushes information to “queue” sq (instead
of directly to s2), while “consumer” s2 pulls that information from sq (at its own
pace, independent of s1). Refactoring AddCache introduces special services sc
and srd to replace a pull from service s1 to service s2; the idea is that “consumer”
s1 pulls information from “cache” sc, which is eagerly filled through pushes from
“reader” srd, which gets the information by pulling from “producer” s2.

Let X[y/Y ] denote the substitution in X of element y for every element from
set Y (i.e., X[y/Y ] = X if X ∩ Y = ∅, and X[y/Y ] = (X \ Y ) ∪ {y} otherwise),
and let ◦ : 2X×Y × 2Y×Z → 2X×Z denote relational composition. Figures 6 and
7 show the predicates and functions that formally define the refactorings in the
core library. The following theorem states their correctness.

Theorem 3.

– Flip?(A) ⇒ ∃R.
[
A ∼R flip(A)

]
– Split?(A; s, s1, s2, T1) ⇒ ∃R.

[
A ∼R split(A; s, s1, s2, T1)

]
– Merge?(A;S, s) ⇒ ∃R.

[
A ∼R merge(A;S, s)

]
– AddQueue?(A; sq) ⇒ ∃R.

[
A ∼R addqueue(A; sq)

]
– AddCache?(A; sc, srd) ⇒ ∃R.

[
A ∼R addcache(A; sc, srd)

]
Together, Thms. 2 and 3 support the refactoring framework shown in Fig. 3.

We note, though, that to apply Thm. 2 with Split and Merge (i.e., to satisfy the
boundary condition), not only the split/merged service s must be in the old/new
parts, but also the services that s calls and those that call s.

4 Deployments & Sensitivities

The whiteboard-style architecture models and rigorous refactoring framework
presented in Sect. 3 offer a formal means of defining and reasoning about (the
correctness of) refactorings. However, the formalism so far does not tell us which
refactorings are “good” and which ones are “bad”; what is missing is a mechanism
to evaluate the effectiveness of a refactoring. In this section, we define non-
quantitative sensitivity indicators based on which SOA developers can make
informed choices between candidate refactorings to solve the Button Problem.
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Let A = (S,Π, Γ, , ). Functions flip, split,merge, addqueue, addcache are de-
fined by the following equations:

flip(A) = (S,Π, Γ, {t 7→ (
t

)-1 | t ∈ T}, {t 7→ (
t

)-1 | t ∈ T})

split(A; s, s1, s2, T1) = ((S \ {s}) ∪ {s1, s2}, Π̂, Γ̂ , ˆ , ˆ )
Π̂ = {t 7→ Πt[s1/{s}] | t ∈ T1} ∪ {t 7→ Πt[s2/{s}] | t /∈ T1}
Γ̂ = {t 7→ Γ t[s1/{s}] | t ∈ T1} ∪ {t 7→ Γ t[s2/{s}] | t /∈ T1}
ˆ = {t 7→ {(s1, s)} ◦ t ◦ {(s, s1)} | t ∈ T1} ∪

{t 7→ {(s2, s)} ◦ t ◦ {(s, s2)} | t /∈ T1}
ˆ = {t 7→ {(s1, s)} ◦ t ◦ {(s, s1)} | t ∈ T1} ∪

{t 7→ {(s2, s)} ◦ t ◦ {(s, s2)} | t /∈ T1}

merge(A;S′, s) = ((S \ S′) ∪ {s}, Π̂, Γ̂ , ˆ , ˆ )
Π̂ = {t 7→ Πt[s/S′] | t ∈ T}
Γ̂ = {t 7→ Γ t[s/S′] | t ∈ T}
ˆ = {t 7→ (s× S′) ◦ t ◦ (S′ × s) | t ∈ T}
ˆ = {t 7→ (s× S′) ◦ t ◦ (S′ × s) | t ∈ T}

addqueue(A; t, s1, s2, s) = (S ∪ {s}, Π, Γ, ˆ , ˆ )
ˆ = ( \ {t 7→ t }) ∪ {t 7→ (

t \ {(s1, s2)}) ∪ {(s1, s)}}
ˆ = ( \ {t 7→ t }) ∪ {t 7→ t ∪ {(s2, s)}}

addcache(A; t, s1, s2, s, s
′) = (S ∪ {s, s′}, Π, Γ, ˆ , ˆ )
ˆ = ( \ {t 7→ t }) ∪ {t 7→ t ∪ {(s′, s)}}
ˆ = ( \ {t 7→ t }) ∪

{t 7→ (
t \

{
s1, s2

}
) ∪ {(s1, s), (s′, s2)}}

Fig. 7: Functions of refactorings in the core library

Example 4. To illustrate core concepts, we shall continue to develop the example
webshop system (Exmp. 1) It actually suffers from exactly the same Button
Problem as the e-commerce system on which our simplified version is based.

Specifically, services chkout and price (in the system as modeled in Fig. 4a)
are sensitive to button-presses on service acc: once acc starts checking whether
orders have been paid for, the performance of chkout and price decreases, as
service db is unable to process the additional calls from acc without affecting
the calls from chkout and price. Checking payment statuses is, however, only a
low-priority task—it does not matter whether it happens immediately or in a
few hours—and it should definitely not hinder the high-priority front-end of the
system (which directly affects business). Refactoring the system to make chkout
and price insensitive to acc is therefore an important improvement. ut

We start by observing that the sensitivity of a service to button-presses on
other services does not depend solely on its incoming push and pull calls, but
also on the machine on which it is deployed: if two architecturally independent
services are deployed on the same machine, an increased load on the one will
affect the performance of the other. To reason about service sensitivities, we
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therefore need to take into account deployments as well. Let M denote the set
of all machines, ranged over by M .

Definition 5. A deployment model D is a tuple (A,M,M) where:

– A ∈ Arch denotes an architecture model;
– M ⊆M denotes a set of machines;
– M : Dom(A)→M denotes a service–machine allocation.

D denotes the set of all deployment models.

Example 5. Reconsider Fig. 4; it actually shows deployment models, where gray
boxes around services represent machines. Thus, in Figs. 4a and 4b, there are
three machines (from top to bottom: a front-end machine, a database machine,
and an administration machine), whereas in Fig. 4c, there are four machines. ut

Based on a deployment model of a system, we can compute two non-quantita-
tive indicators that we shortly use to formalize sensitivity: stress and delay. The
stress of a service is a non-quantitative abstraction of the number of incoming
calls that it needs to process. The higher the number of calls, the higher the
stress of the service and the lower its performance. The delay of a service is a
non-quantitative abstraction of the number of outgoing pulls whose processing
(by other services) it needs to await. The higher the number of pulls, the higher
the delay of the service and the lower its performance. The stress set of a service
s contains the services that affect the stress of s (including itself): if the stress
of a service in its stress set increases, then so does the stress of s. The delay set
of a service s contains the services that affect the delay of s.

Definition 6. Stress,Delay : D× S→ 2S denote the indexed stress and delay
sets defined by the following equations:

Stress(D, s) = {s} ∪
⋃
{Stress(D, s′) | s′ t

A s ∨ M(s′) =M(s)}
Delay(D, s) =

⋃
{Stress(D, s′) ∪ Delay(D, s′) | s t

s′}

where D = (A,M,M) and A = (S, T,Π, Γ, , ).

Note that the delay set of a service s contains the stress set of every service s′
from which s pulls information. This is because the services in the stress set of s′
may negatively affect the rate at which s′ can process pulls by s: if the services
in the stress set of s′ heavily stress s′, then this rate goes down.

We can now formalize (in)sensitivity to button-presses as follows:

– If service s1 is affected by service s2 regardless of s1’s calls to s2, then s1 is
forcibly sensitive to s2 (i.e., s1 is forcibly sensitive to s2 if s2 stresses s1).

– If service s1 is affected by service s2 because s1 requires information from s2
by means of a pull, then s1 is voluntarily sensitive to s2 (i.e., s1 is voluntarily
sensitive to s2 if s2 delays s1).

– If service s1 is unaffected by service s2, it is insensitive to s2.
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Definition 7. I,V,F : D → S × S denote the indexed sensitivity relations
defined by the following equations:

F(D) = {(s, s′) | s′ ∈ Stress(D, s)}
V(D) = {(s, s′) | s′ /∈ Stress(D, s) ∧ s′ ∈ Delay(D, s)}
I(D) = {(s, s′) | s′ /∈ Stress(D, s) ∧ s′ /∈ Delay(D, s)}

Remark:
{
F(D),V(D), I(D)

}
partitions Dom(A)×Dom(A) for D = (A,M,M).

Example 6. Recall from Exmp. 4 that front-end services chkout and price suffer
from the Button Problem in the example webshop system as modeled in Fig. 4a.
We shall apply two changes to alleviate this problem, but first, we show that the
deployment model in Fig. 4a indeed confirms these undesirable sensitivities.

Let D denote the deployment model in Fig. 4a. Because services chkout and
price are deployed on the same machine (and because they receive no external
calls), their stress set under D is {chkout , price}. However, because chkout and
price both pull from service db, their delay set contains all services that stress db,
including service acc. Thus, acc ∈ Delay(D, chkout) and acc ∈ Delay(D, price):
according to the model high-priority chkout and price are both voluntarily sen-
sitive to low-priority acc. Intuitively, if service acc pulls intensely from service
db (increasing the stress of db), the rate at which db can process pulls by chkout
and price is negatively affected (increasing the delay of chkout).

The first change is the application of refactoring Split to divide the responsi-
bilities of existing service db over new services proddb and orderdb; let D̂ denote
the resulting deployment model in Fig. 4b (Exmp. 2). Intuitively, this refactoring
should make services chkout and price insensitive to button-presses on service
acc (because the only pulls they perform are directed to proddb, which is archi-
tecturally independent of acc), but because proddb and orderdb are still deployed
on the same machine, the voluntary sensitivities actually remain: acc can still
stress orderdb, which subsequently affects the processing speed of proddb.

The second change is a redeployment that puts each of services proddb and
orderdb on its own machine; let ˆ̂

D denote the resulting deployment model in
Fig. 4c. A redeployment is not a refactoring, it does not change information
flows among services, and thus it is trivially behavior-preserving; it only changes
the service–machine allocation. By redeploying services according to ˆ̂

D, stress is
no longer shared between proddb and orderdb; as a result, services chkout and
price become insensitive to acc, solving the Button Problem. Reasoning with
sensitivities in this way thus provides a formal justification to refactor. ut

5 Implementation

Engine. We now explain how the formalization presented in the previous section
provides a rigorous foundation for the Elmo tool. To safeguard a tight correspon-
dence between the tool and its formalization, the lead developer of the tool is
closely involved in the formalization as well. Essentially, Elmo’s implementation
consists of two key components: data structures to store architecture models and
deployment models and a reasoning engine. The engine has two capabilities:
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1. Computation of stress sets, delay sets, (in)sensitivities, and secondary per-
formance indicators (e.g., network depth)

2. Exploration of a system’s design space toward one or more insensitivity goals

These capabilities are invoked in Elmo’s two usage modes.

Interactive mode. In interactive mode, after drawing an initial deployment model
of the system in Elmo, Capability 1 is invoked to get an overview of services that
potentially suffer from the Button Problem. The user can subsequently refactor
the model to evaluate and compare manually devised candidate solutions. Inter-
active mode is particularly suitable to get quick feedback on candidate solutions
(e.g., during live meetings with project members to explore the options), without
having to work out all details manually, which is laborious and error-prone. It is
therefore important that computation of performance indicators is fast. To give
an indication, the computation of stress sets, delay sets, and (in)sensitivities in
the model of the full e-commerce system (case study 1; Sect. 2), which consists
of 60 services with 125 calls, takes less than a second (on regular hardware).

Automatic mode. In automatic mode, if service s suffers from the Button Prob-
lem (e.g., found using Capability 1), the user can declaratively formulate a solu-
tion to the problem as a set of target insensitivities from s to other services; then,
Capability 2 is invoked to let Elmo automatically look for series of refactorings
that achieve the specified insensitivity goals by exploring the design space.

The design space of a system is essentially a directed graph, where vertices are
deployment models, and edges are refactorings (from the core library; Sect. 3.3)
and redeployments that transform (the architecture model of) a “source” de-
ployment model into (the architecture model of) a “target” deployment model.
To generate a system’s design space, starting from an initial deployment model,
refactorings are applied and sensitivities are computed for the resulting models
to check if the specified insensitivity goals have been achieved (using Capability
1). In this way, the entire design space is generated and exhaustively explored;
solutions are reported as soon as they are found, so if a satisfactory one is dis-
covered early, the rest of the search may be user-aborted long before exhaustive
exploration is done (it can also be bounded to a fixed depth from the start). We
employ a breadth-first exploration policy, as it finds solutions of few refactorings
(generally more attractive for businesses) sooner than those of many refactorings
(generally more expensive). A similar level of automation to explore a system’s
design space is very difficult to achieve when quantitative models are used, as it
is unclear how to get new quantitative data to instantiate refactored models.

The design space generated from an initial deployment model D0 is finite:
there are finitely many services and calls in D0, there are only finitely many
ways in which refactorings create additional services and calls,3 and the number
3 More precisely, the only services that create additional services or calls are Split,

AddQueue, and AddCache. The number of times a service can be split is bound
by the number of types, while the services and calls added through AddQueue and
AddCache carry annotations that inform Elmo to not refactor them any further.
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of machines is bounded by the number of services. As a result, under our formal-
ization, the Button Problem is decidable in the sense that Elmo can exhaustively
explore the entire design space for solutions. Design spaces do tend to get very
large, though, so even if they can be explored in finite time in theory, it may
not always be feasible in practice. As a result, pending future optimizations (see
below), Elmo’s automatic mode is useful in two scenarios:

– Live meetings: A question that typically arises during discussions among
project members is whether no “easy solutions” (i.e., those that require few
refactorings) are overlooked. In this case, Elmo’s automatic mode can be
effectively used with an explicit depth bound (i.e., maximum number of
refactorings that candidate solutions may consist of), significantly reducing
the design space to explore. If an easy solution is subsequently found that
was previously overlooked, this is of course valuable information; moreover, if
no new easy solution is found, this is valuable information, too, as it gives the
project team confidence (and objective data) to convince executives that a
“hard solution” is fundamentally needed. To give an indication, it takes only
ten minutes to automatically explore the design space of the full e-commerce
system (case study 1; Sect. 2) up to depth 2.

– Off-line: In the absence of short deadlines, Elmo’s automatic mode can per-
fectly be run unrestricted, to fully explore the potentially huge design space.
A crucial observation is that the size of the design space is not a modeling
artifact, but an inherent characteristic of the problem. Without tool support,
SOA developers just have to plow through it by hand, which seems infeasible;
instead, only the more obvious directions are followed, based on experience
and best-practices, leaving a large part of the space unexplored and (poten-
tially better) solutions hidden. Our case studies confirm this (Sect. 2): for
both systems, Elmo found better solutions that SOA developers did not find.

We are working on a number of optimizations to reduce the design space
wherever possible and speed up the exploration: (1) model annotations to fur-
ther constrain which candidate solutions are truly acceptable;4 (2) partial order
reduction to prune away commuting refactorings [20]; (3) parallelization.
4 Elmo may find designs that solve the specified insensitivity goals, but that are still
unacceptable to SOA developers due to external constraints (e.g., the number of ma-
chines exceeds the budget; some services should not be merged because it requires
reorganization of development teams). Instead of letting Elmo first explore the en-
tire design space and then filtering the unacceptable solutions, SOA developers can
specify additional model annotations upfront to constrain which refactorings Elmo
will try to apply; corners of unacceptable solutions in the design space are skipped.

Specifically, in the initial deployment model, users can indicate that a service must
remain intact (i.e., it cannot be split, merged, or modified); that some services cannot
be merged; that some sets of types cannot be split; that a call must remain intact
(i.e., it cannot be flipped or replaced by a queue/cache); that some sets of services
must be collocated; that the number of machines must not exceed some limit.
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6 Conclusion

Related work. Other tools exist that aid in refactoring existing architectures.
These tools help to visualize architectures, detect code smells like dependency
cycles, or validate architectural rules (e.g. [21,11,4,6]). However, these tools work
at the implementation/code level and do not take deployment into account, nor
can they evaluate performance sensitivities like Elmo does. Moreover, a key
strength of Elmo is its rigorous foundation and formal correctness (i.e., the core
contribution of this paper); these other tools do not provide such guarantees.

Application performance monitoring tools (e.g. [7,2,8,18]) provide a quick
insight in interactions between services and aid in detecting performance prob-
lems. However, they can only do this when software is actually deployed; not
during design. These tools can identify bottlenecks, but they have only very lim-
ited support for finding solutions. Based on the formalization presented in this
paper, in contrast, Elmo can automatically compute series of refactorings.

UML component diagrams allow developers to document dependencies be-
tween components/services. A key difference with our approach is that compo-
nent diagrams do not distinguish between pushes and pulls [14] (i.e., component
diagrams model dependencies between components, but they do not model the
direction and initiative of information flows that push and pull operations ad-
ditionally convey); in our model, this is vital information to reason about refac-
torings and sensitivities. To provide such information in UML, complementary
behavioral diagrams (e.g., UML sequence diagrams) can be used, but then the
level of detail becomes too low for our purpose, while at the same time a mainte-
nance burden emerges. Also, mixing different types of diagrams is cumbersome.

Future work. We are currently working along three axes: theory, implementa-
tion, and case studies. Along the theory axis, to better support situations where
the specified insensitivity goals are inconsistent (i.e., impossible to achieve), we
are developing notions of Pareto efficiency of deployment models. The idea is to
devise formal machinery to compute Pareto frontiers: sets of deployment models
such that no deployment model in the set can be be further refactored to elimi-
nate an undesirable sensitivity without simultaneously (re)introducing one. We
are also considering to incorporate a form of simulation to provide quantitative
feedback on refactorings (e.g., [12]); this may be useful to analyze and reason
about, for instance, latency (currently not supported).

Along the implementation axis, we are working on the optimizations stated
in Sect. 5 (model annotations; partial order reduction; parallellization).
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