
Exploring Type-Level Bisimilarity towards
More Expressive Multiparty Session Types

Sung-Shik Jongmans1,2,3 and Nobuko Yoshida3

1 Department of Computer Science, Open University, Heerlen, the Netherlands
2 CWI, Amsterdam, the Netherlands

3 Department of Computing, Imperial College, London, UK

Abstract. A key open problem with multiparty session types (MPST)
concerns their expressiveness: current MPST have inflexible choice, no
existential quantification over participants, and limited parallel compo-
sition. This precludes many real protocols to be represented by MPST.
To overcome these bottlenecks of MPST, we explore a new technique
using weak bisimilarity between global types and endpoint types, which
guarantees deadlock-freedom and absence of protocol violations. Based
on a process algebraic framework, we present well-formed conditions for
global types that guarantee weak bisimilarity between a global type and
its endpoint types and prove their check is decidable. Our main practical
result, obtained through benchmarks, is that our well-formedness condi-
tions can be checked orders of magnitude faster than directly checking
weak bisimilarity using a state-of-the-art model checker.

1 Introduction

Background. To take advantage of modern parallel and distributed comput-
ing platforms, message-passing concurrency is becoming increasingly important.
Modern programming languages, however, offer insufficiently effective linguistic
support to guide programmers towards safe usage of message-passing abstrac-
tions (e.g., to prevent deadlocks or protocol violations).

G

L1 L2 ... Ln

P1 P2 ... Pn

project global
type G onto

each role

type-check
each process
Pi against

local type Li

Fig. 1: MPST framework

Multiparty session types (MPST) [34]
constitute a static, correct-by-construc-
tion approach to simplify concurrent
programming, by offering a type-based
framework to specify message-passing
protocols and ensure deadlock-freedom
and protocol conformance. The idea is
to use behavioural types [1,37] to en-
force protocols (i.e., patterns of admissi-
ble communications) between roles (e.g.,
threads, processes, services) to avoid con-
currency bugs. The framework is illustrated in Fig. 1: first, a global type G (pro-
tocol specification; written by the programmer) is projected onto every role; then,
every resulting endpoint type (local type) Li (role specification) is type-checked

http://orcid.org/0000-0002-4394-8745
http://orcid.org/0000-0002-3925-8557

2 S. Jongmans and N. Yoshida

with the corresponding process Pi (role implementation). If every process is well-
typed against its local type, then their parallel composition is guaranteed to be
free of deadlocks and protocol violations relative to the global type. Notably,
common concurrency bugs as sends without receives, receives without sends,
and type mismatches (actual type sent vs. expected type received) are ruled
out statically. The MPST framework is language-agnostic: in recent years, prac-
tical implementations of MPST have been developed for several programming
languages, including Erlang, F#, Go, Java, and Scala [18,35,36,45,46,50].

Three open problems. Many practically relevant protocols cannot be spec-
ified as global types; this limits MPST’s applicability to real-world concurrent
programs. Specifically, while the original work [33] has been extended with sev-
eral advanced features (e.g., time [7,44], security [11,12,13,17], and parametrisa-
tion [18,25,47]), core features still have significant restrictions: inflexible choice,
no existential quantification over participants, and limited parallel composition.

1. Inflexible choice: In the original work [33], if there is a choice between
multiple branches, the sender in the first communication of each branch must be
the same, the receiver must be the same, and the message type must be different
(i.e., no non-determinism). Moreover, each role not involved in the first commu-
nication of each branch, must have the same behaviour in each continuation. For
instance, the following global type specifies a protocol where Client c repeatedly
requests an arithmetic Server s to compute the sum or product of two numbers:

µX.
[[

c_s :Add · s_c :Sum ·X
]
+
[
c_s :Mul · s_c :Prod ·X

]]
Here, c_s :Add specifies a communication of an Add-message (with two numbers
as payload) from the Client to the Server, while · and + specify sequencing and
branching, and square brackets indicate operator precedence. This is a “good”
global type that satisfies the conditions. In contrast, the following “bad” global
type specifies a protocol where Client c repeatedly requests addition and multi-
plication Servers s1 and s2 via Router r (payload types omitted; r1_r2_r3 :t
abbreviates r1_r2 :t · r2_r3 :t):

µX.
[[

c_ r_s1 :Add · s1_c :Sum ·X
]
+
[
c_ r_s2 :Mul · s2_c :Prod ·X

]]
Several improvements to the original work have been proposed: Honda et al.

managed to allow each role r not involved in a choice to have different behaviour
in different branches [15], so long as r is made aware of which branch is chosen in a
timely and unambiguous fashion (e.g., the previous global type is still forbidden),
while Lange et al., Castagna et al., and Hu & Yoshida managed to allow choices
between different receivers [16,23,36,40]. For instance, the following global type
(the Client directly requests the specialised server) is allowed:

µX.
[[

c_s1 :Add · s1_c :Sum ·X
]
+
[
c_s2 :Mul · s2_c :Prod ·X

]]
But, the following global type (two Clients c1 and c2 use Server S) is forbidden:

µX.

[[
c1_s :Add · s_c1 :Sum ·X

]
+
[
c1_s :Mul · s_c1 :Prod ·X

]
+[

c2_s :Add · s_c2 :Sum ·X
]
+
[
c2_s :Mul · s_c2 :Prod ·X

]]

Exploring Type-Level Bisimilarity towards More Expressive MPST 3

None of the existing works allow the above nondeterministic choices between
different senders. We call this the +-problem: how to add a choice constructor,
denoted by +, to specify choices between disjoint sender-receiver-label triples?

2. No existential quantification: Related to the +-problem is the ∃-
problem: how to add an existential role quantifier, denoted by ∃, to specify
the execution of ∃’s body for some role in ∃’s domain? For instance, instead
of writing a separate global type for 2 Clients, 3 Clients, etc., existential role
quantification allows us to write only one global type for any n>1 Clients:

µX.∃r∈{ci | 1≤i≤n}.
[[
r_s :Add · s_r :Sum ·X

]
+
[
r_s :Mul · s_r :Prod ·X

]]
The ∃-problem was first formulated by Deniélou & Yoshida [22] as the dual of the
∀-problem (i.e., specify the execution of ∀’s body for each role in ∀’s domain):
the ∀-problem was solved in the same paper, but the ∃-problem “raises many
semantic issues” [22] and has remained open for almost a decade.

3. Limited parallel composition: The third open problem related to
choice is the ‖-problem: how to add a constructor, denoted by ‖, that allows
infinite branching (i.e., non-finite control) through unbounded parallel inter-
leaving? While extensions of the original work with parallel composition exist
(e.g., [16,22,23,43]), none of these works supports unbounded interleaving. For
instance, the following global type allows an unbounded number of requests to
be served by the Server in parallel (instead of sequentializing them):

µX.∃r∈{ci | 1≤i≤n}.
[[
r_s :Add ·

[
s_r :Sum ‖X

]]
+
[
r_s :Mul ·

[
s_r :Prod ‖X

]]]
Contributions. We overcome these three bottlenecks of MPST with an ap-
proach based on three key novelties: first, we have a new definition of projection
that keeps more information in the local types than existing definitions; second,
we exploit this extra information to formulate our well-formedness conditions;
third, we use an unexplored proof method for MPST, namely to prove the op-
erational equivalence between a global type and its projections modulo weak
bisimilarity. This makes the proofs cleaner and ultimately allows for more flex-
ibility (e.g., our approach can be modularly combined with traditional session
type checking, but potentially also with other verification methods, such as model
checking or conformance testing). To summarise the highlights:

– For the first time, we provide solutions to the +-problem, the ∃-problem,
and the ‖-problem, by presenting expressive syntax for global and local types
(formulated as process algebraic terms), a refined notion of projection, and
novel well-formedness conditions.

– Our main theoretical result is operational equivalence: a well-formed global
type behaves the same as the parallel composition of its projections, modulo
weak bisimulation. This implies freedom of deadlocks and freedom of protocol
violations of the projections. Checking this equivalence is decidable.
To our knowledge, we are the first to use (weak) bisimilarity to prove the
correctness of a projection operator from global to local types. By doing so,

4 S. Jongmans and N. Yoshida

Client 1 Client 2Server

1: Lock

2: Set(“x”, 5)

3: Set(“y”, 7)

4:Unlock

5: Lock

6:Get(“x”)

7:Get(“y”)

8:Value(“x”, 5)

9:Barrier

10:Value(“y”, 7)

11: Set(“z”, 13)

12:Unlock

(a) Valid execution

Client 1 Client 2Server

Get(“x”)

Value(“x”, 5)

Set(“x”, 7)

Set(“x”, 5+1)

(b) Invalid execution

Client Server

Lock

Get(“x”)

Set(“x”, 42)

Value(“x”, 42)

(c) Invalid execution

Fig. 2: Example executions of the Key-Value Store protocol

we decouple (a) the act of reasoning about projection and (b) the act of
establishing compliance between local types and process implementations;
until our work, these two concerns have always been conflated.

– Our main practical results are: (1) to provide representative protocols ty-
pable in our approach; and (2) the well-formedness conditions of (1) can be
checked orders of magnitude faster than directly checking weak bisimilarity
using mCRL2 [10,20,29], a state-of-the-art model checker.

In Sect. 2, we present an overview of our contribution through a representative
example protocol that is not supported by previous work. In Sect. 3, we present
the details of our theoretical contribution. In Sect. 4, we present the details of our
practical contribution (implementation and evaluation). In Sect. 5, we discuss
related work. We conclude and discuss future work in Sect. 6.

Detailed formal definitions and proofs of all lemmas and theorems can be
found in our supplement [38].

2 Overview of our Approach

Scenario. To highlight our solutions to the +-problem, ∃-problem, and ‖-
problem, we consider aKey-Value Store protocol, similar to those used in modern
NoSQL databases [21,27]. Specifically, our Key-Value Store protocol is inspired
by the transaction mechanism of the popular Redis database [48,49]. This pro-
tocol is not supported by any of the existing MPST works.

The Key-Value Store protocol consists of n Clients that require access to the
store, represented by role names c1, ..., cn, and one Server that provides access to

Exploring Type-Level Bisimilarity towards More Expressive MPST 5

the store, represented by role name s. The store has keys of type Str (strings) and
values of type Nat (numbers). Fig. 2 shows valid and invalid example executions
of the protocol (n=2) as message sequence charts; it works as follows.

First, a Lock-message is communicated from some Client ci (1≤i≤n) to Server
s (Fig. 2a, arrows 1, 5); this grants ci exclusive access to the store. Then, a
sequence of messages to write and/or read values is communicated:

– To write, a Set-message is communicated from ci to s (arrows 2, 3, 11).
– To read, a Get-message is communicated from ci to s (arrows 6, 7). Then,

eventually, a Value-message is communicated from s to ci (arrows 8, 10), but
in the meantime, additional Get-messages can be communicated from ci to
s. In this way, the Client does not need to await the responses of the Server
to perform multiple independent requests. To indicate enough Get-messages
have been sent, a Barrier-message is communicated from ci to s (arrow 9),
which serves as a communication fence: the protocol will only proceed once
all Value-messages for pending Get-messages have been communicated.

The sequence ends with the communication of an Unlock-message from ci to s
(arrow 12). The protocol is then repeated for some Client cj (1≤j≤n); possibly,
but not necessarily, i=j. In this way, the Server atomically processes accesses to
the store between Lock/Unlock-messages.

Global and local types. The corresponding global type and local types, in-
ferred via projection (for some n), are as follows:

G = µX.∃r∈{ci | 1≤i≤n}. r_s :Lock ·

µY.

[[
µZ.

[[
r_s :Get(Str) ·

[
s_r :Value(Str,Nat) ‖Z

]]
+ r_s :Barrier

]
·Y
]

+
[
r_s :Set(Str,Nat) ·Y

]
+
[
r_s :Unlock ·X

]]
LCi

= µX. cis !Lock ·

µY.

[[
µZ.

[[
cis !Get(Str) ·

[
sci ?Value(Str,Nat) ‖Z

]]
+ cis !Barrier

]
·Y
]

+
[
cis !Set(Str,Nat) ·Y

]
+
[
cis !Unlock ·X

]]
LS = µX.∃r∈{ci | 1 ≤ i ≤ n}. rs?Lock ·

µY.

[[
µZ.

[[
rs?Get(Str) ·

[
sr !Value(Str,Nat) ‖Z

]]
+ rs?Barrier

]
·Y
]

+
[
rs?Set(Str,Nat) ·Y

]
+
[
rs?Unlock ·X

]]
Global type r1_r2 :`(t) specifies the communication of a message labelled `
with a payload typed t from sender r1 to receiver r2; global type G1 ·G2 speci-
fies the sequential composition of global types G1 and G2; global type G1 +G2

specifies the alternative composition (choice) of global types G1 and G2; global
type ∃r∈{r1, ..., rn}. G specifies the existential role quantification over domain
{r1, ..., rn} (i.e., the alternative composition of G[r1/r] and ... and G[rn/r], where
G[ri/r] denotes the substitution of ri for every r in G); global type G1 ‖G2 speci-
fies the interleaving composition of G1 and G2 (free merge [4]); global type µX.G
specifies recursion (i.e., X is bound to µX.G in G).

6 S. Jongmans and N. Yoshida

Local type r1r2 !`(t) specifies the send of a `(t)-message through the channel
from r1 to r2; dually, local type r1r2 ?`(t) specifies a receive. Because every
Client participates in only one branch of the quantification, their local types do
not contain ∃ under the recursion. In contrast, because the Server participates
in all branches, LS does contain ∃ under the recursion.

By Thm. 3, G and the parallel composition of LC1 , ..., LCn , LS are opera-
tionally equivalent (weakly bisimilar), which in turn implies deadlock-freedom
and absence of protocol violations. Note also that our global type for the Key-
Value Store protocol indeed relies on solutions to the +-problem (choice between
multiple clients that send a Lock-message), the ∃-problem (existential quantifica-
tion over clients), and the ‖-problem (unbounded interleaving to support asyn-
chronous responses of a statically unknown number of requests).

3 An MPST Theory with +, ∃, and ‖

3.1 Types as Process Algebraic Terms

We define our languages of global and local types as algebras over sets of (global)
communications and (local) sends/receives. This subsection presents preliminar-
ies on the generic algebraic framework we use, based on the existing algebras
PA [3] and TCP+REC [2]; the next subsection presents our specific instantia-
tions for global and local types.

Let A denote a set of actions, ranged over by α, and let {X1, X2, . . . , Y, . . .}
denote a set of recursion variables. Then, let Term(A) denote the set of (alge-
braic) terms, ranged over by T , generated by the following grammar:

T ::= 1 | α | T1 +T2 | T1 ·T2 | T1 ‖T2 | X | 〈Xk |{Xi 7→ Ti}i∈I〉 (k ∈ I)

Term 1 specifies a skip; the grey background indicates it should not be
explicitly written by programmers (but it is used only implicitly in the oper-
ational semantics). Term α specifies an atomic action from A. Terms T1 +T2,
T1 ·T2, and T1 ‖T2 specify the alternative composition, the sequential composi-
tion, and the interleaving composition (free merge [4]; a form of parallel com-
position without interaction between the operands) of T1 and T2. Terms X and
〈Xk |{Xi 7→ Ti}i∈I〉 specify recursion, where {Xi 7→ Ti}i∈I is a recursive speci-
fication that maps recursion variables to terms, Xk is the initial call (for Tk),
and every Xj that occurs in Tk is a subsequent recursive call (for Tj); we write
µX.T instead of 〈X |{X 7→ T}〉.

Let X ⇀ Term(A) denote the set of all recursive specifications (i.e., ev-
ery recursive specification is a partial function), ranged over by E,F , and let
sub(E, T) denote the simultaneous substitution of term E(X) for each recursion
variable X in T . Fig. 3 defines the operational semantics of terms. It consists of
two components: relation −→ defines reduction of terms, while relation ↓ defines
successful termination of terms. In words, term T1 +T2 is reduced by reducing
either T1 or T2; term T1 ·T2 is reduced by reducing first T1 and then T2; term

Exploring Type-Level Bisimilarity towards More Expressive MPST 7

α
α−→ 1

T1
α−→ T ′1

T1 ·T2
α−→ T ′1 ·T2

T1 ↓ T2
α−→ T ′2

T1 ·T2
α−→ T ′2

T1
α−→ T ′1

T1 +T2
α−→ T ′1

T2
α−→ T ′2

T1 +T2
α−→ T ′2

T1
α−→ T ′1

T1 ‖T2
α−→ T ′1 ‖T2

T2
α−→ T ′2

T1 ‖T2
α−→ T1 ‖T ′2

sub(E,E(X))
α−→ T ′

〈X |E〉 α−→ T ′

(a) Reduction

1 ↓
T1 ↓

T1 +T2 ↓
T2 ↓

T1 +T2 ↓
T1 ↓ T2 ↓
T1 ·T2 ↓

T1 ↓ T2 ↓
T1 ‖T2 ↓

sub(E,E(X)) ↓
〈X |E〉 ↓

(b) Termination

Fig. 3: Operational semantics of terms

T1 ‖T2 is reduced by reducing T1 and T2 interleaved; and term 〈X |E〉 is reduced
by reducing the version of E(X) where recursion variables have been substituted.

A term is 1 -free if it has no occurrences of 1 . A term is closed if it has
no occurrences of free recursion variables. A term T is deterministic if (1) for
every action α, there exists at most one term T ′ such that T can reduce to T ′
by performing α, and (2) every term to which T can reduce is deterministic as
well. Henceforth, we consider only 1 -free, closed, and deterministic terms.

We note that 〈A,+, ·, ‖〉 is the signature of PA [3], while 〈 1 ,A,+, ·, ‖,X, 〈- |-〉〉
is a subsignature of TCP+REC [2]. As the operational semantics of terms in
Term(A) coincides with the operational semantics of terms in (the correspond-
ing subalgebra of) TCP+REC, our languages of global and local types inherit
TCP+REC’s sound and complete axiomatisation, used in our tool (Sect. 4.1).

3.2 Global Types and Local Types

Actions. We instantiate Term(A) to obtain languages of global and local types
by defining action sets for (global) communications and for (local) sends/receives.

Let R = {a, b, ...} denote the set of all role names, ranged over by r. Let
Lab = {Lock,Get, ...} denote the set of all labels, ranged over by `. Let T =
{Nat,Bool, . . .} denote the set of all payload types, ranged over by t. Let U =
Lab × T denote the set of all message types, ranged over by U ; we write `(t)
instead of 〈`, t〉. Finally, let Ag and Al denote the sets of all (global) communi-
cations and (local) sends/receives, ranged over by g and l, generated by:

g ::= r1_r2 :U (if: r1 6= r2)

l ::= r1r2 !U | r1r2 ?U | εrr1r2 (if: r1 6= r2 and r1 6= r 6= r2)

Global action r1_r2 :U specifies the communication of a U -message from
sender r1 to receiver r2; we note that communications are synchronous, as actions
in the underlying algebra are indivisible [2,3], but asynchrony can be encoded
(Exmp. 1, below). Local action r1r2 !U specifies the send of a U -message through
channel r1r2 (from r1 to r2). Dually, local action r1r2 ?U specifies a receive. Local

8 S. Jongmans and N. Yoshida

split(r, r1 _r2 :U) =

{
(1 , r1 _r2 :U) if: r ∈ {r1, r2}
(r1 _r2 :U, 1) otherwise

split(r,G1 ·G2) =

(G′1, G

′′
1 ·G2) if: split(r,G1) = (G′1, G

′′
1) and G′′1 6= 1

(G1 ·G′2, G′′2) if: split(r,G1) = (G′1, G
′′
1) and G′′1 = 1 and

split(r,G2) = (G′2, G
′′
2) and G′′2 6= 1

(G1 ·G2, 1) otherwise

G G

M G split(r2, G) = (G′, G′′)

r1�r2 :U ·M r1 _r1r2 :U ·
[
r1r2 _r2 :U ‖G′

]
·G′′

(asynchrony)

Σ ∅ 1

Mk Gk Σ {Mi}i∈I\{k} G k ∈ I
Σ {Mi}i∈I Gk +G

(n-ary choice)

µ(X, `c, `e, ∅) 1
(finite recursion: base)

M ′i = µ(X, `c, `e, {〈r1j , r2j ,Mj〉}j∈I\{i}) for all i ∈ I
Σ {
[
r1i_r2i :`c ·Mi ·X

]
+
[
r1i_r2i :`e ·M ′i

]
}i∈I G

µ(X, `c, `e, {〈r1i, r2i, Gi〉}i∈I) µX.G
(finite recursion: step)

Σ {M [ri/r]}i∈I G

∃r∈{ri}i∈I .M G
(existential role quantification)

Fig. 4: Macros

action εrr1r2 specifies the idling of role r during a communication between roles
r1 and r2. The inclusion of such annotated idling actions in local types is novel;
we shortly elaborate on its purpose.

We can now define Glob = Term(Ag) and Loc = Term(Al) as the sets of
all global and local types, ranged over by G and L.

Macros. As a testimony to the unique expressive power of our language of global
types, we extend it with a number of macros that can be expanded to “normal”
global types in Glob. A macro M is generated by the following grammar:

M ::= G ∈ Glob | r1�r2 ·M | Σ{Mi}i∈I |
µ(X, `c, `e, {〈r1i, r2i,Mi〉}i∈I) | ∃r∈{ri}i∈I .M

Degenerate “macro” G is a normal global type; it is part of the grammar to nest
global types inside macros. Macro r1�r2 ·M specifies an asynchronous commu-
nication from sender r1 to receiver r2. Macro Σ{Mi}i∈I specifies an n-ary choice
among |I| alternatives. Macro µ(X, `c, `e, {〈r1i, r2i,Mi〉}i∈I) specifies finite re-
cursion: at the start of each unfolding of recursion variable X, for some i ∈ I,
either an `c-message is communicated from sender r1i to receiver r2i (in which
case they continue their participation in the recursion), or an `e-message is com-
municated (in which case they exit). Macro ∃r∈{ri}i∈I .M specifies existential

Exploring Type-Level Bisimilarity towards More Expressive MPST 9

role quantification. Macros can be nested. Slightly abusing notation, we allow
macros to occur and be expanded freely in “normal” global types.

Fig. 4 defines the macro expansion rules. We note that the left-hand side of
is a macro, while the right-hand side is a normal global type. We demonstrated
existential role quantification in Sect. 2; below, we give two more examples to
illustrate our encoding of asynchronous communication and finite recursion.

Example 1 (Asynchrony). Although communications are synchronous, we can
encode asynchrony by representing buffered channels (unordered, as in asyn-
chronous π-calculus [32]) explicitly as roles that participate in a protocol. To
this end, assume for all r1, r2 ∈ R, there exists a role r1r2 ∈ R as well (to
represent the buffer from r1 to r2); alternatively r1r2 could be any fresh name.

The following global types (message types omitted) specify paradigmatic
cases for protocols with asynchronous communications:

M1 = a�b · 1 G1 = a_ab · ab_b

M2 = a�b · a�b · 1 G2 = a_ab ·
[
ab_b ‖ a_ab

]
· ab_b

M3 = a�b · b�a · 1 G3 = a_ab · ab_b · b_ba · ba_a

M4 = a�b · a_b G4 = a_ab · ab_b · a_b

(For brevity, we omit 1 from the resulting global types; this can be incorporated
in the macro expansion rules, at the expense of a more complex formulation.)

Global type G1 specifies an asynchronous communication from Alice to Bob.
Global type G2 specifies two asynchronous communications from Alice to Bob;
Alice can do the second send already before Bob has done the first receive.
Global type G3 specifies an asynchronous communication from Alice to Bob,
followed by one from Bob to Alice; in contrast to G2, Bob can send only after
he has received (i.e., this encoding of asynchrony preserves causality of messages
sent and received by the same role). Global type G4 specifies an asynchronous
communication from Alice to Bob, followed by a synchronous communication
from Bob to Alice; it highlights that, unlike existing languages of global types,
ours supports mixing synchrony and asynchrony in a single global type. ut

Example 2 (Finite recursion). The Key-Value Store protocol in Sect. 2 does not
terminate: in its global type, the inner recursions (Y and Z) can be exited, but
the outer recursion (X) cannot. A version of this protocol that terminates once
each of the Clients has indicated it has finished using the store (e.g., by sending
an Exit-message) can also be specified.

We illustrate the key idea in a simplified example:

G1 = µX.
[[

a_c :Con ·X
]
+ a_c :Exit

]
G2 = µX.

[[
b_c :Con ·X

]
+ b_c :Exit

]
G = µX.

[[
a_c :Con ·X

]
+
[
a_c :Exit ·G2

]]
+
[
b_c :Con ·X

]
+
[
b_c :Exit ·G1

]
Global type G1 specifies the communication of either a Con-message (to continue
the recursion) or an Exit-message (to break it) from Alice to Carol. Global type
G2 is similar. Global type G specifies the communication of a Con-message from

10 S. Jongmans and N. Yoshida

L(r) ↓
for all r ∈ domL

L↓

(a) Termination

L(r1)
r1r2 !U−−−−−→ L′r1 L(r2)

r1r2 ?U−−−−−→ L′r2

L r1 _r2 :U−−−−−−−→ L[r1 7→ L′r1 , r2 7→ L′r2]

L(r)
εrr1r2−−−−→ L′r

L
εrr1r2−−−−→ L[r 7→ L′r]

(b) Reduction

Fig. 5: Operational semantics of groups of local types

T � r = T if: G ∈ { 1 } ∪ X

(G1 ∗G2) � r = (G1 � r) ∗ (G2 � r) r1 _r2 :U � r =

r1r2 !U if: r1 = r 6= r2

r1r2 ?U if: r1 6= r = r2

εrr1r2 if: r1 6= r 6= r2if: ∗ ∈ {+, ·, ‖}

〈X |E〉 � r = 〈X |E � r〉 E � r = {X 7→ E(X) � r | X ∈ domE}

G ��R = {r 7→ G � r | r ∈ R} if: r(G) ⊆ R 6= ∅

Fig. 6: Projection

either Alice or Bob to Carol, or an Exit-message. In the latter case, Carol stops
communicating with a role, while she proceeds communicating with the other
role. Thus, the communications between Alice and Carol, and between Bob and
Carol, are decoupled (i.e., decisions to continue or break recursions are made per
role). Macro µ generalizes this pattern to arbitrary recursion bodies. ut

Groups. Finally, let R ⇀ Loc denote the set of all groups of local types (i.e.,
every group is a partial function from role names to local types), ranged over
by L. The idea is that while a global type specifies a protocol among n roles
from one global perspective, a group of local types specifies a protocol from the
n local perspectives. Fig. 5 defines the operational semantics of groups, built on
top of the operational semantics of local types; we use the f [x 7→ y] notation
to update function f with entry x 7→ y. In words, group L is reduced either by
synchronously reducing the local types of a sender r1 and a receiver r2 (yielding
a communication from r1 to r2), or by reducing the local type of an idling role.

3.3 End-Point Projection: from Global Types to Local Types

A key part of MPST (Fig. 1) is a projection operator that consumes a global
type G as input and produces a group of local types L as output; it is correct if,
under certain well-formedness conditions, G and L are operationally equivalent.

Let r(G) denote the set of all role names that occur in G. Fig. 6 defines
our projection operator. In words, the projection of a communication r1_r2 :U
onto a role r is a send r1r2 !U if the role is sender in the communication, a
receive r1r2 ?U if it is receiver, or an idling action εrr1r2 if it is not involved;
the projections of all other forms of global types onto r are homomorphic; the
projection of a global type onto a set of roles R is the corresponding group of

Exploring Type-Level Bisimilarity towards More Expressive MPST 11

T ↓
T ⇓

T
τ−→ T ′ ⇓
T ⇓

(a) Termination

T
α−→ T ′

T
α
=⇒ T ′

T
τ−→ T ′

α
=⇒ T ′′

T
α
=⇒ T ′′

T
α
=⇒ T ′

τ−→ T ′′

T
α
=⇒ T ′′

T
σ
=⇒ T ′

T
τ
=⇒ T ′

(b) Reduction

Fig. 7: Weak operational semantics; T, T ′, T ′′ ∈ Glob ∪ Loc ∪ (R⇀ Loc)

projections, where the side condition implies that the group is nonempty and
contains a local type for at least every role name that occurs in G. Thus, a group
of projections of G is a partial function relative to the set of all roles R, but it
is total relative to the set of roles r(G) ⊆ R that occur in G. (We note that we
also continue to assume global types are 1 -free, closed, and deterministic.)

Our projection operator is similar to existing projection operators in the
MPST literature [34], but it also differs on a fundamental account: it produces
local types with annotated idling actions. These idling actions will be instrumen-
tal in the definition of our well-formedness conditions. We note that no idling
actions occur in the local types for the Key-Value Store protocol in Sect. 2. This
is because after the idling actions have been used to establish well-formedness,
they are of no more use and can be eliminated to simplify the local types.

The following lemmas state key properties about termination and reduction
behaviour of global types and their projections: Lem. 1 states projection is sound
and complete for termination; Lem. 2 states the same for reduction.

Lemma 1.
[
G ↓ implies (G � r) ↓

]
and

[
(G � r) ↓ implies G ↓

]
Proof. By induction on G. ut

Lemma 2.
[
G

g−→ G′ implies (G � r)
g�r−−→ (G′ � r)

]
and

[
(G � r)

g�r−−→ L′ implies
[[
G

g−→ G′ and L = G′ � r
]
for some G′

]]
Proof. Both conjuncts are proven by induction on the structure of G, also using
Lem. 1 (needed because termination plays a role in reduction of ·). ut

3.4 Weak Bisimilarity of Global Types, Local Types, and Groups

The idling actions introduced in local types by our projection operator are inter-
nal, because they never compose into communications that emerge between local
types in groups. Therefore, the operational equivalence relation under which we
prove the correctness of projection should be insensitive to idling actions.

First, let Aτ = {εrr1r2 | r1 6= r2 and r1 6= r 6= r2} denote the set of all in-
ternal actions, ranged over by τ, σ. Second, Fig. 7 defines an extension of our
operational semantics (Fig. 3) with relations that assert weak termination and
weak reduction (i.e., versions of termination and reduction that are insensitive to
internal actions). Third, Fig. 8 defines weak bisimilarity (≈), in terms of weak
similarity (�), in terms of weak termination and weak reduction; it coincides
with the definition found in the literature (e.g., [2]), with the administrative

12 S. Jongmans and N. Yoshida

T1 � T2

T1 ↓ implies T2 ⇓

[[[
T ′1 � T ′2 and T2

α
=⇒ T ′2

]
for some T ′2

]
or
[
T ′1 � T2 and α ∈ Aτ

]]
for all T1

α−→ T ′1

R,R-1 ⊆ �
T1 R T2

T1 ≈ T2

Fig. 8: Weak operational equivalence; T1, T ′1, T2, T ′2 ∈ Glob ∪ Loc ∪ (R⇀ Loc)

exception that we need the fourth rule in Fig. 7b to account for the fact we
have multiple different internal actions. We use a double horizontal line in the
formulation of rules to indicate they should be applied coinductively.

The notion of weak reduction allows us to generalize the soundness and com-
pleteness of projection from roles (Lem. 2) to groups of roles: Lem. 3 states (1)
if G can g-reduce to G′ and the projection of G′ is defined, then the group of
projections of G can reduce to the group of projections of G′, either directly or
with a trailing weak τ -reduction; (2) conversely, if the group of projections of G
can g-reduce to L′, then G can g-reduce to G′ and either L′ equals the group of
projections of G′, or it can get there with a weak reduction.

Lemma 3.

[G
g−→ G′ and

G ��R is defined

]
implies

[

(G ��R)
g−→ (G′ ��R) or

(G ��R)
g−→ L′ τ

=⇒ (G′ ��R)

]
for some L′, τ

and

(G ��R) g−→ L′ implies

[
G

g−→ G′ and

[
L′ = G′ ��R or
L′ τ

=⇒ (G′ ��R)

]]
for some G′, τ

Proof. Both conjuncts are proven by induction on R, also using Lem. 2. ut

3.5 Well-formedness of Global Types

In general, projection does not preserve weak operational semantics.

Example 3 (Bad protocols). The following global types (message types omitted)
specify “bad” protocols that do not permit “good” concurrent implementations:

G1 = a_b+ a_c G2 = a_b · c_d

ab ! + ac !︸ ︷︷ ︸
G1�a

ab?+ εbac︸ ︷︷ ︸
G1�b

εcab+ ac?︸ ︷︷ ︸
G1�c

ab ! · εacd︸ ︷︷ ︸
G2�a

ab? · εacd︸ ︷︷ ︸
G2�b

εcab · cd !︸ ︷︷ ︸
G2�c

εdab · cd?︸ ︷︷ ︸
G2�d

Global type G1 specifies a communication from Alice to either Bob or Carol,
chosen by Alice. This is a bad protocol, because if Alice chooses Bob, there is no
way for Carol to know (and vice versa): Carol cannot locally distinguish between
whether Alice has not made her choice yet, or whether Alice has chosen Bob.
Formally, this is manifested in the fact that Carol’s local type can at any time

Exploring Type-Level Bisimilarity towards More Expressive MPST 13

choose to perform idling action εcab (i.e., local type G1 � c has two reductions,
neither one of which has priority), thereby assuming that Alice has chosen Bob.
However, Bob can symmetrically assume that Alice has chosen Carol. As a result,
the group projection can reduce as follows: G1 �� {a, b, c}

εcab−−→ L1
εbac−−→ L2. Now,

L2 cannot reduce further, but Alice has not terminated yet. This sequence of
reductions cannot be (weakly) simulated by G1.

Global type G2 specifies a communication from Alice to Bob, followed by a
communication from Carol to Dave. This is a bad protocol, because there is no
way for Carol and Dave to know when the communication from Alice to Bob
has occurred. Formally, this is manifested in the fact that Carol’s and Dave’s
local types can at any time choose to perform idling actions, thereby assuming
that the communication from Alice to Bob has occurred. As a result, the group
projection can reduce as follows:G2��{a, b, c, d}

εcab−−→ L1

εdab−−→ L2
d_ d−−−→ L3

a_ b−−−→
L4. This sequence cannot be (weakly) simulated by G2. ut

Next, we define two well-formedness conditions that invalidate the previous
examples; in Sect. 3.6, we prove that if these conditions are satisfied by a global
type G, it is indeed guaranteed that G and G �� R are operationally equivalent
(i.e., weakly bisimilar). Instead of defining the conditions in terms of global types,
we define them in terms of projections (i.e., local types). Informally:

C For every r ∈ R, for every choice that local type G � r has between a weak
reduction l

=⇒ (where l is a send, a receive, or an idling action) and a com-
pletely unobservable weak reduction τ

=⇒, choosing to perform the former
does not disable the latter, and vice versa. This can be thought of as a form
of commutativity between l and τ .

EC For every r ∈ R, one of the following is true:
1. For every every weak reduction l

=⇒ that local type G � r can perform
(where l is a send or a receive, but not an idling action), it can perform
a reduction l−→. That is, if G � r can perform l in the future after idling
actions, it can do l already eagerly in the present.

2. Local type G�r is the start of a causal chain: a sequence of τ -reductions,
followed by a non-τ -reduction, that are “causally related” to each other.
An εrr1r2-reduction is causally related to a εrr3r4-reduction iff {r1, r2} ∩
{r3, r4} 6= ∅. Globally speaking, this means communication between r3
and r4 must be preceded by communication between r1 and r2.

These conditions must hold coinductively for all local types that G�r can reduce
to. Essentially, these conditions state that by performing idling actions, a local
type can neither decrease its possible behaviour (C), nor increase it (EC-1),
unless it is guaranteed the added behaviour cannot be exercised yet, because it
is causally related to other communications that need to happen first (EC-2).

Example 4 (Bad protocols, continued). Global type G1 (Exmp. 3) is ill-formed:
its projections onto b and c violate condition C. Global type G2 (Exmp. 3) is
also ill-formed: its projections onto c and d violate condition EC. ut

14 S. Jongmans and N. Yoshida

[
Λ′′1 ≈ Λ′′2 and Λ′1

α2==⇒ Λ′′1 and Λ′2
α1==⇒ Λ′′2

]
or[

Λ′′1 ≈ Λ′2 and Λ′1
α2==⇒ Λ′′1 and α1 ∈ Aτ

]
or[

Λ′1 ≈ Λ′′2 and Λ′2
α1==⇒ Λ′′2 and α2 ∈ Aτ

]
or[

Λ′1 ≈ Λ′2 and α1, α2 ∈ Aτ
]

for some Λ′′1 , Λ

′′
2

for all

[
Λ

α1==⇒ Λ′1 and Λ
α2==⇒ Λ′2

]
Cα1
α2

(Λ) C(Λ)

Cατ (Λ)

for all α, τ
C(Λ′)

for all Λ α−→ Λ′

[
Λ′′ ≈ Λ∗∗ and Λ

α2−−→ Λ∗
α1==⇒ Λ∗∗

]
or[

Λ′′ ≈ Λ∗ and Λ
α2−−→ Λ∗ and α1 ∈ Aτ

]
or

ChainΛ

for some Λ∗, Λ∗∗

for all Λ α1==⇒ Λ′

α2−−→ Λ′′

ECα1
α2

(Λ) EC(Λ)

ECτα(Λ)

for all α /∈ Aτ , τ
EC(Λ′)

for all Λ α−→ Λ′

ChainL

[
L′1 = L′2 and l1 = l2

]
for all

[
L

l1−−→ L′1 and L
l2−−→ L′2

] [r(τ) ∩ r(l) 6= ∅ and
[
ChainL′ or l /∈ Aτ

]]
for all L τ−→ L′

l−→ L′′

Fig. 9: Well-formedness conditions; Λ,Λ′, Λ′′, Λ′1, Λ′′1 , Λ′2, Λ′′2 ∈ Loc∪ (R⇀ Loc)

Fig. 9 defines C and EC formally. We define C not only for local types, but also
for groups of local types, as this simplifies some notation later on. We prove key
properties of C: Thm. 1 states commutativity of local sends/receives/idling (l) in
local types gets lifted to commutativity of global communications/idling (α) in
groups of local types; Lem. 4 states weak bisimilarity preserves commutativity.

Theorem 1.

[[[
Clτ (L(r))
for all l, τ

]
for all r ∈ domL

]
implies

[
Cατ (L)

for all α, τ

]]
and

[[
C(L(r)) for all r ∈ domL

]
implies C(L)

]
Proof. The first conjunct is proven by induction on the rules of =⇒. The second
is proven by coinduction on the rule of C, also using the first conjunct. ut

Lemma 4.
[[

Cα1
α2
(L1) and L1 ≈ L2

]
implies Cα1

α2
(L2)

]
and

[[
C(L1) and L1 ≈ L2

]
implies C(L2)

]
Proof. The first conjunct is proven by applying the definitions of C and ≈; the
second is proven by coinduction on the rule of C, also using the first conjunct. ut

We also prove key properties of Chain and EC, both of which work specifically
for groups of projections: Lem. 5 states if the projections of r1 and r2 are both
causal chains, they cannot weakly reduce to local types where they can perform

Exploring Type-Level Bisimilarity towards More Expressive MPST 15

reciprocal actions (r1 the send; r2 the receive); Thm. 2 states eagerness of lo-
cal sends/receives (not idling) in projections gets lifted to eagerness of global
communications in groups of projections (cf. Thm. 1).

Lemma 5.

[
Chain (G ��R)(r1)

τ1==⇒ L′(r1)
r1r2 !U−−−−−→ L′′(r1) and

Chain (G ��R)(r2)
τ2==⇒ L′(r2)

r1r2 ?U−−−−−→ L′′(r2)

]
implies false

Proof. By induction on the rules of =⇒. ut

Theorem 2.

[[
ECτl ((G ��R)(r))

for all l /∈ Aτ , τ, r ∈ R

]
implies

[
ECτα(G ��R)
for all α, τ

]]
and

[[
EC(L(r)) for all r ∈ domL

]
implies EC(L)

]
Proof. The first conjunct is proven by using Lem. 5; the second is proven by
coinduction on the rule of EC, also using the first conjunct. ut

We note that, in contrast to Lem. 4 for C, we do not have a lemma that states
weak bisimilarity preserves EC. Such a lemma would have been highly useful in
our subsequent proofs, but it is unfortunately false, because weak bisimilarity
does not preserve Chain. A simple counterexample, for local types, is this: L1 =
r1r2 !U and L2 = εr3r4r5 · r1r2 !U , where {r1, r2} ∩ {r3, r4, r5} = ∅. While L1 and
L2 are weakly bisimilar, L1 is the start of a unary causal chain, but L2 is not.
The problem here is that Chain depends on the role names associated with idling
actions, whereas weak bisimilarity abstracts those role names away.

We call a global type well-formed if each of its projections satisfies C and EC.

3.6 Correctness of Projection under Well-Formedness

We now to prove our main result: if a global type is well-formed, it is weakly
bisimilar to the group of its projections. We start by defining a relation ./ to
relate global types with groups of local types (denoted by R in Fig. 8):

C(G ��R) EC(G ��R) (G ��R)
?
=⇒ L′ ?⇐= L C(L)

G ./ L

Here, we write L1
?
=⇒ L2 as an abbreviation for:[

L1 ≈ L′1
τ
=⇒ L′2 ≈ L2 for some L′1,L′2

]
or L1 ≈ L2

In words, L1
?
=⇒ L2 means L1 has a silent reduction (only τ -s) to a term that

is weakly bisimilar to L2, or L1 is already weakly bisimilar to L2 (without any
reductions). Essentially, if C(G �� R) and EC(G �� R), then ./ relates G to a set
of groups S = {L | G ./ L} that can roughly be characterised as follows:

– (base) G ��R is in S;
– (successors) any group to which G ��R can silently reduce, is in S;
– (predecessors) any group that can silently reduce to G ��R, is in S;

16 S. Jongmans and N. Yoshida

– (pseudo-predecessors) any group that can silently reduce to a group to which
G ��R can silently reduce, is in S;

– (closure) S is closed under weak bisimilarity.

The following technical lemma states if a well-formed group of projections
G �� R can weakly g-reduce to some group L′, then the original global type G
can g-reduce to some G′, and L′ and the group of projections of G′ either are
weakly bisimilar, or they can weakly reduce to a weakly bisimilar group L′′.

Lemma 6.
[[

C(G ��R) and EC(G ��R) and (G ��R)
g
=⇒ L′

]]
implies

[[
G

g−→ G′ and (G′ ��R)
?
=⇒ L′′ ?⇐= L′

]
for some L′′

]
Proof. By induction on the rules of =⇒, also using Lem. 3. ut

The following two lemmas state key properties of ./: Lem. 7 states ./ preserves
termination (as weak termination); Lem. 8 states ./ coinductively preserves re-
duction (as weak reduction). Together, these lemmas imply ./ ⊆ � and ./-1⊆ �,
which in turn imply ./ ⊆ ≈.

Lemma 7.
[[
G ./ L and G ↓

]
implies L⇓

]
and

[[
G ./ L and L↓

]
implies G⇓

]
Proof. The first conjunct is proven by induction on the rules of =⇒, also using
Lem. 1; the second is proven by contradiction (assume not G ↓; derive false;
conclude G ↓; it implies G⇓). ut

Lemma 8.

[[
G ./ L and G

g−→ G′
]
implies

[[
G′ ./ L′ and L g

=⇒ L′
]

for some L′

]]

and

[[
G ./ L and L g−→ L′

]
implies

[[
G′ ./ L′ and G

g−→ G′
]

for some G′

]]
and

[[
G ./ L and L τ−→ L′

]
implies G ./ L′

]
Proof. The first and second conjunct are proven by induction on the rules of =⇒,
also using Lemmas 3–4; the third is proven by induction on the rules of =⇒. ut

Theorem 3.
[
C(G ��R) and EC(G ��R)

]
implies G ≈ (G ��R)

Proof. By coinduction on the rule of � (Fig. 8), also using Lemmas 7-8. ut

A group of local types L enjoys deadlock-freedom if it either has successfully
terminated (L↓; Fig. 5a) or can make another reduction. A group of local types
L enjoys absence of protocol violations relative to global type G if, coinductively,
every non-τ reduction of L can be simulated by G (i.e., every communication
in the group is “permitted” by G). The following corollary relates Thm. 3 of
operational equivalence to these classical MPST properties:

Exploring Type-Level Bisimilarity towards More Expressive MPST 17

Corollary 1. If global type G is well-formed, then the group of G’s projections
enjoys deadlock-freedom and absence of protocol violations relative to G.

The key insight to understand this, is that global types are by definition free
of deadlocks (they either reduce to 1 , or they never terminate; Fig. 3), while
weak bisimilarity preserves deadlock-freedom of global types in their projections
(notably, weak bisimilarity is sensitive to termination, and a group of local types
terminates only if all individual local types terminate; Fig. 5a). Weak bisimilarity
also directly implies freedom of protocol violations.

3.7 Decidability of Checking Well-Formedness

We note our proof of Thm. 3 is non-constructive, in the sense that ./ is infinitely
large (i.e., for each group of local types, there exist infinitely many weakly bisim-
ilar groups). The following proposition states this is not a problem in practice.

Proposition 1. Checking C(L) and EC(L) is decidable.

The rationale behind this proposition is as follows. First, to check C(L) and
EC(L), by Thm. 1 and Thm. 2, it suffices to check C(L(r)) and EC(L(r)) for
each r ∈ domL. For each such local type L(r), there are two possibilities.

If local type L(r) has finite control, its state space can be exhaustively ex-
plored in finite time, so checking C(L(r)) and EC(L(r)) is obviously decidable.

In contrast, if L(r) has non-finite control, we make two observations. The
first observation is that the only possibly source of infinity is the occurrence of
recursion variables under parallel composition. The second observation is that
C and EC are true for L1 ‖L2 if they are true for L1 and L2 separately; this is
because C and EC essentially assert a “diamond structure” on the reductions of
L1‖L2, which is precisely the operational semantics of ‖ (Fig. 3). Thus, we can
check C(L1‖L2) and EC(L1‖L2) by checking C(L1), C(L2), EC(L1), and EC(L2),
thereby “avoiding” the possible source of infinity.

We note that splitting the checks for parallel composition in this way not only
ensures decidability; it also avoids exponential state explosion (in the number of
nested ‖-operators in a single local type) in local types with finite control.

3.8 Discussion of Challenges

Our use of (weak) bisimilarity, plus the key insight to annotate silent actions with
additional information to keep track of choices, made the problem of proving the
correctness of projection (Thm. 3) feasible. The major technical challenges to
achieve this were defining the right bisimulation relation (Sect. 3.5) and discov-
ering corresponding well-formedness conditions (Sect. 3.6).

A naive weak bisimulation relation, Rnaive, relates every global type only
with its group of projections. Rnaive is sufficient to prove that every reduction
of a global type can be weakly simulated with one non-silent reduction of the
group (sender and receiver), followed by a number of silent reductions (idling

18 S. Jongmans and N. Yoshida

Parse .glob
or .scr file

Project onto
all roles

Check well-
formedness

Generate
APIs in Java

Global type Local types

Local types
(if well-formed)

Fig. 10: Overview of mpstpp

processes). In contrast, Rnaive is insufficient to prove that every reduction of the
group can be simulated by its global type, because of silent actions: if global type
G is related to group of projections L by Rnaive, and a silent action subsequently
reduces L to L′, the simulation fails, as Rnaive does not relate G to L′.

To alleviate this issue, we defined the bisimulation relation in such a way
that it relates every global type G to a group of local types that are not nec-
essarily equal to the projections of G, but every local type can be behind the
corresponding projection (the local type can reach the projection with silent
actions) or ahead (the projection can reach the local type with silent actions).

4 Practical Experience with the Theory

4.1 Implementation

Tool. We implemented a tool, mpstpp, based on the core theoretical contribu-
tions of this paper. Fig. 10 shows a high-level overview of the tool, including the
main components (boxes) and data flows (arrows).

First, mpstpp parses an input .glob-file to a data structure for a global type
G (programmer-friendly Scribble-style syntax [35] is also supported as input).
Then, it projects G onto all roles that occur in G. Then, it checks each of the re-
sulting local types for well-formedness, depending on settings, either sequentially
or in parallel : a key advantage of the formulation of our well-formedness condi-
tions is that they can be checked modularly for every role in isolation, enabling
us to take advantage of modern multicore hardware. Finally, if the local types
are well-formed, idling actions are eliminated and typed communication APIs are
generated from the local types to enable MPST++-based programming in Java.

Optimisations. Parsing, computing projections, and generating APIs is rela-
tively inexpensive; instead, the run times of our tool are dominated by checks for
well-formedness. We therefore implemented several optimisations to make these
checks more efficient. Before we present these optimisations, we first note that
the complexity of checking well-formedness of a local type L is polynomial in
the number of successors that can be reached from L (Fig. 9).

(1) Our first optimisation targets local types with parallel composition; local
type L1 ‖L2 is potentially a serious bottleneck, as its number of successors is
exponential in the number of nested ‖-operators. Therefore, even with finite state

Exploring Type-Level Bisimilarity towards More Expressive MPST 19

spaces, we check the well-formedness of L1 ‖L2 by checking the well-formedness
of L1 and L2, without explicitly considering the exponentially many successors
of L1 ‖L2, exploiting the same observation as with decidability (Sect. 3.7).

(2) Our second optimisation concerns computation of weak reductions. In
particular, to check whether C and EC are true for a local type L, according to
their definitions (Fig. 9), we need to iterate over each of their weak reductions.
Especially if L has many τ -reductions (Fig. 7), computing the set of weak reduc-
tions can be expensive. To avoid this, mpstpp computes sound (but incomplete)
approximations of C and EC. We implemented two kinds of approximations: (a)
checking versions of C and EC where every occurrence of =⇒ in the definition is
replaced with −→, and (b) checking L ≈ L′ for every τ -reduction from L to L′.
Approximation (a) is sound for both C and EC (rationale: if individual reductions
can commute, sequences of reductions consisting of those individual reductions
can commute as well), but approximation (b) is sound only for C (rationale:
auxiliary relation Chain of EC is not preserved by weak bisimilarity). To ensure
soundness, thus, mpstpp never uses approximation (b) for EC.

(3) Our third optimisation targets the checks for weak bisimilarity that occur
in several places in the definitions of C and EC (Fig. 9). Instead of computing the
full reduction relations and run an algorithm to decide their weak bisimilarity
(which would be computationally costly), we take advantage of the fact that our
language of local types is based on existing algebras (Sect. 3.1) that have sound
and complete axiomatisations. Specifically, to check whether two local types are
weakly bisimilar, mpstpp applies the axioms as rewrite rules and compares the
resulting normal forms for structural equality. To ensure rewriting is fast, we
sacrificed completeness (i.e., we use rewriting only to eliminate as many silent
actions as possible in a sound way, but for instance, our rewrite procedure cannot
prove that (L1 · τ)+L2 and L2 +L1 are weakly bisimilar); however, for the ample
examples we tried (including this paper’s), this optimisation is highly effective.

Optimisations (2) and (3) are conservative: mpstpp may conclude C or EC is
false, even though it is actually true. While this affects completeness, soundness
is guaranteed: if mpstpp concludes a local type is well-formed, it really is.

4.2 Evaluation of the Approach

Setup. In the previous section, we formulated and proved the theoretical cor-
rectness of our well-formedness conditions (Thm. 3). In this section, we demon-
strate the practical usefulness through experimental evaluation in benchmarks.
Specifically, we show that checking our well-formedness conditions is faster and
more scalable than explicitly checking operational equivalence (which currently
seems the only alternative to attain the same level of expressiveness as our work).

In our benchmarks, we compare three approaches to check operational equiv-
alence between a global type and its group of projected local types:

– mpstpp-seq (baseline): In this approach, the mpstpp tool is used to check our
well-formedness conditions (which imply operational equivalence; Thm. 3),
without using any form of parallel processing.

20 S. Jongmans and N. Yoshida

– mpstpp-par: Like mpstpp-seq, except each projected local type is checked
in a separate thread. The fact our well-formedness conditions can be easily
parallelised in this way is an important practical advantage.

– explicit: In this approach, mpstpp is used only for parsing and projecting;
after that, we use the state-of-the-art verification tool set mCRL2 [10,20,29]
to explicitly check operational equivalence (details below).

We identified six example protocols (details below) that can naturally be
scaled in the number of roles N (e.g., the number of Clients in the Key-Value
Store protocol). Using each of the three approaches, for each of the protocols, for
each value of N between the minimal number of roles Nmin (e.g, Nmin=2 in the
Key-Value Store protocol: the Server and one Client) and 16, we subsequently
checked operational equivalence; varyingN in this way, yields insights not only in
per-case performance, but also scalability. To get statistically reliable results [31],
we repeated executions as many times as was necessary until the 95% confidence
interval was within 5% of our reported means (i.e., there is a 95% probability
that the true mean is within 5% of our reported means).

We ran our benchmarks on a machine with an Intel Xeon 6130 processor (16
cores; no hyper-threading), using Debian 9, Java 13, and mCRL2 201908.0.

Translation to mCRL2. In the explicit approach, we use mCRL2 [10,20,29]
to explicitly check if global type G and its group of projections L are opera-
tionally equivalent. Our choice for mCRL2 is motivated by the fact our languages
of global and local types are based on the same process algebra as mCRL2’s spec-
ification language, so their translation to mCRL2 specifications is direct and
straightforward. Moreover, mCRL2 is mature (e.g., used in industry [5]), and
it uses optimised, state-of-the-art algorithms to check behavioural equivalences
(e.g., [28]), so we are comparing our tool with a serious competitor.

First, we translate global type G to mCRL2 specification JGK. Then, we use
mCRL2 tools mcrl22lps and lps2lts to normalize JGK to a linear process spec-
ification (LPS) and generate a corresponding labelled transition system (LTS).
Because of the directness of the translation, the transition labels in the resulting
LTS are all global communication actions of the form r1_r2 :U .

Second, we translate group of projections L, consisting of roles r1, ..., rn, to
mCRL2 specification JLK. It looks as follows (in formal mCRL2 notation [29]):

∇{ri_rj :U |1≤i,j≤n,i 6=j,U∈U}(

Γ{(rirj !Utrirj?U)→(ri_rj :U)|1≤i,j≤n,i 6=j,U∈U}(JL(r1)K ‖ ... ‖ JL(rn)K))

where each JL(ri)K is a direct translation of local type L(ri) to an mCRL2
specification; ‖ is a form of parallel composition that prescribes both interleaving
and synchronisation of operand actions; t is synchronous composition of actions;
Γ is the communication operator that replaces synchronised local send/receive
actions rirj !U t rirj?U with global communication action ri_rj :U ; and ∇ is
the allow operator that allows only global communication actions to be executed
(i.e., unsynchronized, individual send/receive actions cannot be executed).

Exploring Type-Level Bisimilarity towards More Expressive MPST 21

When translating a local type L(ri) to an mCRL2 specification JL(ri)K, to
make mCRL2’s subsequent verification easier, we already eliminate as many
idling actions εrr1r2 as possible (modulo branching bisimulation); those that re-
main are represented as a general τ action, because mCRL2 does not need the
additional information provided by εrr1r2 . Then, we use mcrl22lps and lps2lts
to generate an LPS and LTS for JLK.

Third, we use mCRL2 tool ltscompare to check if the LTS for JGK is weakly
bisimilar to the LTS for JLK. We note that normalisation to an LPS using
mcrl22lps is a requirement to use ltscompare.

Protocols. We used the following protocols in our benchmarks:

Key-Value Store (KVS): This protocol is the same protocol as the one pre-
sented in Sect. 2, except each inner parallel composition (‖) is replaced with
sequential composition (·). This is because mcrl22lps does not support nor-
malisation of mCRL2 specifications where ‖ occurs under recursion.

Load Balancer (LB): This protocol consists of a Master and a number of
Workers. Iteratively, first, a Request-message is communicated from the Mas-
ter to one of the Workers; then, a Response-message is communicated from
that Worker to the Master.

Work Stealing (WS): This protocol consists of a Master and a number of
Workers. Iteratively, a Job-message is communicated from the Master to one
of the Workers. Meanwhile, Workers can try to “steal” jobs from each other:
at any point, first, a Steal-message can be communicated from one Worker
to another Worker; then, either a Job-message (if the former Worker has a
job to spare) or a None-message (otherwise) is communicated from the latter
Worker to the former Worker.

Map/Reduce (MR): This protocol consists of a Master and a number of Work-
ers. First, in no particular order, a Map-message is communicated from the
Master to each Worker; then, in no particular order, a Reduce-message is
communicated from each Worker to the Master.

Peer-to-Peer (PtP): This protocol consists of a number of Peers. Unordered,
a Msg-message is communicated from each Peer to each other Peer.

Pub/Sub (PS): This protocol consists of a Publisher and a number of Sub-
scribers. In no particular order, a Sub-message can be communicated once
from each Subscriber to the Publisher to gain a subscription. Concurrently,
a Pub-message can be communicated from the Publisher to each Subscriber
with a subscription.

KVS LB WS MR PtP PS

+ X X X
∃ X X X X
‖ X X X X

The table on the right summarises the
features used in each of these protocols.

For each 1≤n≤15, we instantiated the
Key-Value Store, Load Balancer, Work
Stealing, and Map/Reduce protocols with
1 Server/Master + n Clients/Workers.
For each 2≤n≤16, we instantiated the Peer-to-Peer protocol with n Peers. For

22 S. Jongmans and N. Yoshida

(a) Key-Value Store (b) Load Balancer (c) Work Stealing

(d) Map/Reduce (e) Peer-to-Peer (f) Pub/Sub

Fig. 11: Speedups (y-axis; y>1E+0 means faster, y<1E+0 means slower) of ex-
plicit relative to mpstpp-seq as the number of roles increases (x-axis)

each 2≤n≤7, we instantiated the Pub/Sub protocol with 1 Publisher and n Sub-
scribers; we did not instantiate the Pub/Sub protocol with n>7 Subscribers, as
the resulting global types are too large (their size grows exponentially in n).

Benchmark results. Figures 11–12 shows the results of our benchmarks. The
x-axis indicates the number of roles; the y-axis indicates relative speed-ups. The
baselines are at y=1E+0 and y=1: above it, a competing approach is faster than
mpstpp-seq; below it, it is slower. We draw two conclusions.

(1) For each protocol and number of roles, mpstpp-seq outperforms
explicit. In the cases of Key-Value Store and Load Balancer, explicit grows
towards mpstpp-seq, but the growth levels off as the number of roles increases,
while explicit is still about two order of magnitude slower than mpstpp-seq
in the best of circumstances. In the cases of Work Stealing, Peer-to-Peer, and
Pub/Sub, the LTSs generated from the translated mCRL2 specifications were
too large to be compared (i.e., ltscompare produced an error) beyond 7, 5, and
5 roles; this was no issue for mpstpp-seq. In the case of Map/Reduce, the LTSs
were small enough to compare using mCRL2’s ltscompare, but after an initial
upwards slope for 2≤N≤7 roles, explicit starts to perform progressively worse.

(2) Especially for larger numbers of roles, parallelisation can yield
serious performance improvements. In the cases of Key-Value Store and
Load Balancer, mpstpp-par outperforms mpstpp-seq only with 14–16 roles; for
smaller numbers of roles, parallel execution is slower. In the worst case (Load
Balancer, 2 roles), the slowdown is roughly 10.9µs

3.2µs = 3.4; we hypothesise that be-

Exploring Type-Level Bisimilarity towards More Expressive MPST 23

(a) Key-Value Store (b) Load Balancer (c) Work Stealing

(d) Map/Reduce (e) Peer-to-Peer (f) Pub/Sub

Fig. 12: Speedups (y-axis; y>1 means faster, y<1 means slower) of mpstpp-par
relative to mpstpp-seq as the number of roles increases (x-axis)

cause of the low absolute execution times, the cost of spawning and synchronising
threads outweighs their benefit. However, the ascending gradient indicates that
as the number of roles increases, relatively more of the total work can be paral-
lelised, yielding progressive rewards. In the cases of Work Stealing, Map/Reduce,
Peer-to-Peer, and Pub/Sub, similar trends can be observed, except y=1 is crossed
sonner. The absolute execution times for these protocols and for small numbers
of roles are higher than for Key-Value Store and Load Balancer.

5 Related Work

Multiparty compatibility. Closest to this paper is existing literature on mul-
tiparty compatibility [6,24,40,42]. The key idea, initially developed by Deniélou
and Yoshida for the original MPST [23,24], is to represent (groups of) local types
operationally as (systems of) communicating finite state machines (CFSM) [8]. A
CFSM M is a state machine where transitions are labelled with sends/receives;
a system of CFSMs S is a parallel composition where CFSMs communicate
through asynchronous buffers. Multiparty compatibility, then, is a condition on
the reachable states and transitions of a system S = (M1, ...,Mn): if it is sat-
isfied by S, the system is guaranteed to be safe (no deadlocks; no unmatched
sends/receives) and live (S terminates, assuming at least one Mi can termi-
nate). Multiparty compatibility is a sufficient condition to guarantee safety and
liveness, but not necessary: there exist safe/live systems that are not multiparty

24 S. Jongmans and N. Yoshida

compatible. Therefore, several generalisations have been proposed to cover timed
behaviour [6], undirected choice [40], and non-synchronisability [42].

The main similarities between our method in this paper and the multiparty
compatibility approach are: (1) we also use an operational interpretation of local
types; (2) we guarantee similar liveness/safety properties; (3) and we also neatly
factor out the act of checking conformance of processes to local types (resp. CF-
SMs). In contrast, we support a wider range of behaviours. Moreover, from a
practical/computational perspective, multiparty compatibility is a global condi-
tion that needs to be checked on the whole state space of a system (i.e., parallel
composition of the CFSMs), prone to exponential blow-up; our well-formedness
conditions, in contrast, are completely local and require only polynomial time to
check. The reason we do not require CFSM-like machinery in this paper is that
our operational correspondence (weak bisimilarity) is sensitive to termination:
notably, in Fig. 5a, a group of local types terminates iff every individual lo-
cal type terminates (for multiparty compatibility, proofs are done modulo trace
equivalence [24], which cannot distinguish between successful/abnormal termi-
nation and is therefore in itself too weak to show deadlock-freedom).

Expressiveness of MPST. In the original MPST theory [33], and many of
its descendants (e.g., [14,19,22,24,25,43]), the restrictions on choices are en-
forced through a combination of syntax and additional well-formedness con-
ditions. Notably, in these works, communications in global types are specified
as r1_r2 :{`i ·Gi}i∈I , so syntactically, it is impossible to specify choices among
senders or receivers. There exist also papers where a seemingly more general
binary +-like operator is introduced, particularly those that support choices
among receivers [16,23,36,40], but the well-formedness conditions still basically
restrict the use of + in these works to r1_r2 :{`i ·Gi}i∈I or r_{ri :`i ·Gi}i∈I .

This is the first paper where well-formedness conditions do not force the use
of + into one of those two restricted forms. Moreover, our well-formedness con-
ditions are compatible with unbounded interleaving (recursion under parallel),
beyond similar operators in previous work [16,22,23,43]. An alternative approach
is to completely omit statically checked well-formedness conditions (and projec-
tion), and to only dynamically verify communication actions against global types
through monitoring, as recently proposed [30]. The language of global types in
that paper is more expressive than ours in this paper, but all verification happens
at run-time, whereas we provide correctness guarantees already at compile-time.

Session types and model checking. Recently, there has been growing interest
in using model checking to verify properties of (multiparty) session types, similar
to our use of mCRL2 as an alternative to checking well-formedness (Sect. 4.2).
Lange et al. [39] infer behavioural types from Go programs and use mCRL2 to
verify the inferred types, to establish safety properties (combined with another
tool, KITTeL [26], to establish liveness). Hu and Yoshida [36] use a custom model
checker to verify safety and progress properties of local types (represented as
CFSMs) as part of API generation in the Scribble toolchain for MPST [35].

Exploring Type-Level Bisimilarity towards More Expressive MPST 25

Closest to our use of mCRL2 is the work of Scalas et al. [52,53], where mCRL2
is used to verify properties of local types (e.g., deadlock-freedom), while a form of
dependent type-checking is used to verify conformance of processes against those
types (i.e., actors in Scala); no global types and projection are used, though (pro-
grammers write local types manually). The idea is that properties model-checked
on the types carry over to the processes. Similarly, Scalas and Yoshida [51] use
mCRL2 to model-check session environments, as a more expressive alternative
to the classical consistency condition needed to prove subject reduction. Note
that [51, Theorem 5.15] shows that, in the case that a set of processes is typable
by a single multiparty session (i.e. a single global type), type-level properties
including safety, deadlock-freedom and liveness guarantee the same properties
for multiparty session π-processes. Hence our type-level analysis is directly us-
able to provide decidable procedures to verify session π-calculi with extended
expressiveness [51, Theorem 7.2].

6 Conclusion

A key open problems with multiparty session types (MPST) concerns expressive-
ness: none of the previous languages of global and local types supports arbitrary
choice (e.g., choices between different senders), existential quantification over
roles, and unbounded interleaving of subprotocols (in the same session). In this
paper, we presented the first theory that supports these features. Our main the-
oretical result is operational equivalence under weak bisimilarity: this guarantees
classical MPST properties for groups of local types projected from a global type,
namely freedom of deadlocks and absence of protocol violations. Our main prac-
tical result is that our well-formedness conditions, which guarantee operational
equivalence, can be checked orders of magnitude faster than directly checking
weak bisimilarity, which is demonstrated by our benchmark results.

We identify several interesting avenues for future work. First, it is useful to
extend our theory with parametrisation along the lines of Castro et al. [18] (which
currently works only for restrictive choices); their proof technique for correctness
seems to offer substantial synergy with our bisimilarity-based approach in this
paper. Second, we aim to investigate extensions of our theory with subtyping
(e.g., in terms of weak similarity). Notably, while asynchronous communication
can be encoded in our current theory, asynchronous subtyping is known to be
undecidable [9,41], so the connection between the two is interesting to explore.

Acknowledgments. Funded by the Netherlands Organisation of Scientific Re-
search (NWO): 016.Veni.192.103. This work was carried out on the Dutch na-
tional e-infrastructure with the support of SURF Cooperative. Supported by EP-
SRC projects EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1,
EP/N028201/1, EP/T006544/1.

26 S. Jongmans and N. Yoshida

References

1. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P., Gay,
S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi, V.,
Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida, N.:
Behavioral types in programming languages. Foundations and Trends in Program-
ming Languages 3(2-3), 95–230 (2016)

2. Baeten, J.C.M., Bravetti, M.: A ground-complete axiomatisation of finite-state pro-
cesses in a generic process algebra. Mathematical Structures in Computer Science
18(6), 1057–1089 (2008)

3. Bergstra, J.A., Fokkink, W., Ponse, A.: Chapter 5 - process algebra with recursive
operations. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process
Algebra, pp. 333 – 389. Elsevier Science (2001)

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60(1-3), 109–137 (1984)

5. van Beusekom, R., Groote, J.F., Hoogendijk, P.F., Howe, R., Wesselink, W.,
Wieringa, R., Willemse, T.A.C.: Formalising the dezyne modelling language in
mcrl2. In: FMICS-AVoCS. Lecture Notes in Computer Science, vol. 10471, pp.
217–233. Springer (2017)

6. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR.
LIPIcs, vol. 42, pp. 283–296. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

7. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: CONCUR.
Lecture Notes in Computer Science, vol. 8704, pp. 419–434. Springer (2014)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

9. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

10. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wes-
selink, W., Wijs, A., Willemse, T.A.C.: The mcrl2 toolset for analysing concurrent
systems - improvements in expressivity and usability. In: TACAS (2). Lecture Notes
in Computer Science, vol. 11428, pp. 21–39. Springer (2019)

11. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Typing access control and se-
cure information flow in sessions. Inf. Comput. 238, 68–105 (2014)

12. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. Mathematical Structures in Computer Science 26(8), 1352–1394
(2016)

13. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., Rezk, T.: Session types for
access and information flow control. In: CONCUR. Lecture Notes in Computer
Science, vol. 6269, pp. 237–252. Springer (2010)

14. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL. pp. 263–274. ACM (2013)

15. Carbone, M., Yoshida, N., Honda, K.: Asynchronous session types: Exceptions and
multiparty interactions. In: SFM. Lecture Notes in Computer Science, vol. 5569,
pp. 187–212. Springer (2009)

16. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

17. Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure infor-
mation flow in multiparty communications. Formal Asp. Comput. 28(4), 669–696
(2016)

Exploring Type-Level Bisimilarity towards More Expressive MPST 27

18. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint apis
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

19. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science 26(2), 238–302 (2016)

20. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mcrl2 toolset and its recent
advances. In: TACAS. Lecture Notes in Computer Science, vol. 7795, pp. 199–213.
Springer (2013)

21. Davoudian, A., Chen, L., Liu, M.: A survey on nosql stores. ACM Comput. Surv.
51(2), 40:1–40:43 (2018)

22. Deniélou, P., Yoshida, N.: Dynamic multirole session types. In: POPL. pp. 435–446.
ACM (2011)

23. Deniélou, P., Yoshida, N.: Multiparty session types meet communicating automata.
In: ESOP. Lecture Notes in Computer Science, vol. 7211, pp. 194–213. Springer
(2012)

24. Deniélou, P., Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: ICALP (2). Lecture
Notes in Computer Science, vol. 7966, pp. 174–186. Springer (2013)

25. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Logical Methods in Computer Science 8(4) (2012)

26. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using
bitvector arithmetic. In: VSTTE. Lecture Notes in Computer Science, vol. 7152,
pp. 261–277. Springer (2012)

27. Gessert, F., Wingerath, W., Friedrich, S., Ritter, N.: Nosql database systems: a
survey and decision guidance. Computer Science - R&D 32(3-4), 353–365 (2017)

28. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlogn) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Trans. Com-
put. Log. 18(2), 13:1–13:34 (2017)

29. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

30. Hamers, R., Jongmans, S.S.: Discourje: Runtime verification of communication
protocols in clojure. In: TACAS 2020 (in press)

31. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: SC. pp. 73:1–73:12.
ACM (2015)

32. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
ECOOP. Lecture Notes in Computer Science, vol. 512, pp. 133–147. Springer
(1991)

33. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM (2008)

34. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

35. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE. Lecture Notes in Computer Science, vol. 9633, pp. 401–418. Springer
(2016)

36. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE. Lecture Notes in Computer Science, vol. 10202, pp. 116–133. Springer (2017)

28 S. Jongmans and N. Yoshida

37. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016)

38. Jongmans, S.S., Yoshida, N.: Exploring Type-Level Bisimilarity towards More Ex-
pressive Multiparty Session Types. Tech. Rep. TR-OU-INF-2020-01, Open Univer-
sity of the Netherlands (2020)

39. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: ICSE. pp. 1137–1148. ACM
(2018)

40. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL. pp. 221–232. ACM (2015)

41. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: FoSSaCS. Lecture Notes in Computer Science, vol. 10203, pp. 441–457 (2017)

42. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: CAV (1). Lecture Notes in Computer Science, vol. 11561,
pp. 97–117. Springer (2019)

43. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially com-
mutative asynchronous sessions. In: ESOP. Lecture Notes in Computer Science,
vol. 5502, pp. 316–332. Springer (2009)

44. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017)

45. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in f#. In: CC. pp.
128–138. ACM (2018)

46. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC. pp. 98–108. ACM (2017)

47. Ng, N., Yoshida, N.: Pabble: parameterised scribble. Service Oriented Computing
and Applications 9(3-4), 269–284 (2015)

48. Redis Labs: Redis (nd), accessed 18 October 2019, https://redis.io
49. Redis Labs: Transactions – redis (nd), accessed 18 October 2019, https://redis.io/

topics/transactions
50. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty

sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1–
24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

51. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. PACMPL
3(POPL), 30:1–30:29 (2019)

52. Scalas, A., Yoshida, N., Benussi, E.: Effpi: verified message-passing programs in
dotty. In: SCALA@ECOOP. pp. 27–31. ACM (2019)

53. Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with de-
pendent behavioural types. In: PLDI. pp. 502–516. ACM (2019)

https://redis.io
https://redis.io/topics/transactions
https://redis.io/topics/transactions

Exploring Type-Level Bisimilarity towards More Expressive MPST 29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Exploring Type-Level Bisimilarity towards More Expressive Multiparty Session Types

