
Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types
Sung-Shik Jongmans £

Department of Computer Science, Open University, the Netherlands
Centrum Wiskunde & Informatica (CWI), NWO-I, the Netherlands

Francisco Ferreira £

Department of Computer Science, Royal Holloway, University of London, UK

Abstract
Programming distributed systems is difficult. Multiparty session typing (MPST) is a method to
automatically prove safety and liveness of protocol implementations relative to protocol specifications.

In this paper, we introduce two new techniques to significantly improve the expressiveness of the
MPST method: projection is based on implicit local types instead of explicit; type checking is based
on the operational semantics of implicit local types instead of on the syntax. That is, the reduction
relation on implicit local types is used not only “a posteriori” to prove type soundness (as usual),
but also “a priori” to define the typing rules—synthetically.

Classes of protocols that can now be specified/implemented/verified for the first time using the
MPST method include: recursive protocols in which different roles participate in different branches;
protocols in which a receiver chooses the sender of the first communication; protocols in which
multiple roles synchronously choose both the sender and the receiver of a next communication,
implemented as mixed input/output processes. We present the theory of the new techniques, as well
as their future potential, and we demonstrate their present capabilities to effectively support regular
expressions as global types (not possible before).

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases behavioural types, multiparty session types, choreographies

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.9

Funding Sung-Shik Jongmans: Netherlands Organisation of Scientific Research: 016.Veni.192.103

1 Introduction

Programming distributed systems is difficult. One of the challenges is to prove that the
implementation of protocols (message passing) is safe and live relative to the specification.
Safety means that “bad” communications never happen: if a communication happens in
the implementation, then it is allowed to happen by the specification. Liveness means that
“good” communications eventually happen. Multiparty session typing (MPST), proposed
by Honda et al. [39,40], is a method to automatically prove safety and liveness of protocol
implementations relative to protocol specifications. Figure 1 visualises the idea:

1. First, a global type G specifies a protocol among roles/participants r1, . . . , rn, while
processes P1, . . . , Pn implement it. A global type models the behaviour of all processes
together (e.g., “first, a number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, local types L1, . . . , Ln are extracted from global type G by projecting G onto every
role ri. Each local type models the behaviour of one process alone (e.g., for Bob, “first,
he receives a number from Alice; next, he sends a boolean to Carol”).

3. Last, the processes are verified by type checking every process Pi against its local type Li.
Well-typedness at compile-time implies safety and liveness at run-time.

The following simple example further demonstrates the MPST method.
© Sung-Shik Jongmans and Francisco Ferreira;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 9; pp. 9:1–9:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ssj@ou.nl
mailto:Francisco.FerreiraRuiz@rhul.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Sound, Regular Multiparty Sessions via Implicit Local Types

G

L1 L2 · · · Ln

P1 P2 · · · Pn

global type
projection
local types
type check
processes

Figure 1 MPST method

aaa bbb ccc
unit

0

(a) Sum of zero numbers

aaa bbb ccc
5
6

unit
11

(b) Sum of two numbers

Figure 2 Two executions of the protocol in Example 1

I Example 1. The Summation protocol consists of roles Alice (aaa), Bob (bbb), and Carol (ccc).
First, zero or more numbers are communicated from Alice to Bob. Next, a token (unit) is
communicated from Alice to Bob. Last, the sum of the numbers is communicated from Bob
to Carol. Figure 2 visualises two executions of this protocol.

The following recursive global type specifies the protocol:

G = µX.aaa_bbb:
{

Nat.X

Unit.bbb_ccc:Nat.X

Informally, global type p_q :{ti .Gi}1≤i≤n specifies the communication of a value of data
type ti from role p to role q, for some 1≤ i≤n; we omit braces when n= 1.

The following recursive local types, projected from the global type, specify Alice and Bob:

Laaa = µX.bbb⊕

{
Nat.X

Unit.X
Lbbb = µX.aaa&

{
Nat.X

Unit.ccc⊕Nat.X

Informally, local types q⊕{ti .Li}1≤i≤n and p&{ti .Li}1≤i≤n specify the send and the receive
of a value of data type ti from role p to role q, for some 1≤ i≤n; we omit braces when n= 1.

The following processes, well-typed against the local types, implement Alice and Bob:

Paaa = bbb〈5〉.bbb〈6〉.bbb〈unit〉.0︸ ︷︷ ︸
specifically, Figure 2b

Pbbb = loop(sum:Nat = 0)
∑{aaa(x:Nat).recur(sum+x)

aaa(_:Unit).ccc〈sum〉.0

Informally, process q〈e〉.P implements the send of the value of expression e to role q, while
process

∑
{p(xi :ti).Pi}1≤i≤n implements the receive of a value of data type ti from role p

into variable xi, for some 1≤ i≤n; we omit
∑

and braces when n= 1. Well-typedness means
that every action implemented in Paaa (resp. Pbbb) is also specified in Laaa (resp. Lbbb). J

Over the past 10–15 years, substantial progress has been made both in MPST theory
(e.g., extensions with advanced features, including time [10, 57], security [15–17, 24], and
parametrisation [25,33,59]) and in MPST practice (e.g., tools for F# [58], F? [71], Go [25],
Java [41,42], OCaml [70], PureScript [46], Rust [48,49], Scala [26,61], and TypeScript [56]).

1.1 Open Question: Regular Expressions as Global/Local Types
The expressiveness of the grammar of global/local types determines which protocols can be
specified. In turn, this determines which protocols can be implemented in a provably safe
and live fashion: the higher the expressiveness, the higher the applicability of the MPST
method to program real(istic) distributed systems. For this reason, substantial research in
the community has aimed to increase expressiveness. Doing so is not as simple as just adding
new operators to the grammars; to be effective, these operators need to be supported by
projection and type checking as well, which is actually complicated. As a result, regarding
basic features, grammars of global types have effectively evolved as follows:

S. Jongmans and F. Ferreira 9:3

In the original paper [39]:

G ::= p_q :{ti .Gi}1≤i≤n
∣∣ µX.G ∣∣ X ∣∣ X

Thus, global types can specify that a sender chooses the data type but not the receiver.

In recent papers [21–23,54,65]:

G ::= p_{qi :ti .Gi}1≤i≤n
∣∣ µX.G ∣∣ X ∣∣ X

Thus, global types can specify that a sender chooses the data type and also the receiver.

However, it remains an open question how to effectively generalise these sub-regular grammars
to regular ones (e.g., global types that can specify that a receiver initially chooses the sender).
This generalisation would enable the MPST-based verification of significantly more processes.

The notion of using regular expressions as global/local types, or choreographies, to specify
protocols is intuitive, well-known, and actively studied. Early papers include those by Busi
et al. [14], Bravetti–Zavattaro [12, 13], Lanese et al. [50], and Castagna et al. [20]; later
papers include those by Guanciale–Tuosto et al. [27, 35, 64], Jongmans et al. [36, 37, 44], and
De’Liguoro et al. [29]. Most of these many papers focus on projection, though, while none of
them focus on type checking: typing rules to verify processes using regular expressions do
not yet exist in the MPST literature. However, type checking is just as vital as projection in
the MPST method (Figure 1). Thus, beyond the non-trivial achievements to only project
regular expressions, the next elusive milestone is to also type-check processes against them.

In summary, the evolution of sub-regular grammars of global/local types has been hard and
relatively slow; it also seems to remain relatively far from reaching an effective generalisation
to regularity, despite considerable interest in the community. In contrast, for binary session
typing, the state-of-the-art went beyond regularity already (including mixed choice [19]) and
has started to explore context-freeness [2, 3, 45,60,63]. These observations suggest that the
open question for multiparty must be significant, too, but apparently very hard to answer.
In this paper, we rebuild the foundations of the MPST method using new techniques and
answer the open question in the affirmative. For the first time, we effectively generalise the
sub-regular grammar of global types to the following “open-ended” regular grammar:

G ::= p_q :t
∣∣ G1 + G2

∣∣ G1 · G2
∣∣ G∗ ∣∣ X ∣∣ · · ·

1.2 Contributions of This Paper
In existing papers in the MPST literature, there is a tight correspondence between the
structure of global/local types and the structure of processes, instrumental to define projection
and type checking. For instance, the global/local types and the processes in Example 1 have
essentially the same structure: cosmetics aside, the processes are just syntactic refinements
of the global/local types (choices resolved; loops unrolled; values instead of data types).

However, the usage of regular expressions as global/local types breaks the tight correspond-
ence. Generally speaking—deliberately unspecific to regular expressions—the foundational
challenge is to define projection and type checking when the grammars are so far apart that
structurally matching processes to global/local types is prohibitively complicated. The idea
of this paper is to abandon such structural matching and use two new techniques instead:

Local types and projection: Projection is based on implicit local types instead of explicit.
To clarify the difference, consider the following projections of global type G in Example 1:

Lold = µX.aaa&{Nat.X, Unit.ccc⊕Nat.X} Lnew = G�bbb

ECOOP 2023

9:4 Sound, Regular Multiparty Sessions via Implicit Local Types

Explicit local type Lold is representative of existing techniques (same as Lbbb in Example 1):
it has the same structure as G. In contrast, implicit local type Lnew is representative of
this paper’s new technique; essentially, it is just a role-indexed global type.
Notably, the concept of merging, shown to be problematic for session types [62] (i.e.,
published results based on merging turned out to be defective), is no longer needed.

Type checking: Type checking is based on the operational semantics of implicit local
types instead of on the syntax. That is, the reduction relation on implicit local types is
used not only “a posteriori” to prove type soundness (as usual), but also “a priori” to
define the typing rules. To clarify the difference, consider the following typing rules:

Ξ ` e : tk Ξ ` P : Lk
Ξ ` qk〈e〉.P :

∑
{qi !ti .Li}1≤i≤n

[Old]
Ξ ` e : t Ξ ` P : L′ L

q !t−−→ L′

Ξ ` q〈e〉.P : L [New]

Rule [Old] is representative of existing techniques: it states that an output process is
well-typed by an explicit local type if it matches the structure. In contrast, rule [New] is
representative of this paper’s new technique: it states that an output process is well-typed
by an implicit local type if it matches the behaviour.1 As every local type is of the form
G�r, its reduction relation is derivable from the reduction relation of G. The applicability
of rule [New] is decidable as the reduction relations constitute finite state machines.
The programmer does not write implicit local types directly, but only global types; implicit
local types are automatically extracted as role-indexed global types.

Our aim is to present the theory of the new techniques, as well as their future potential, and
to demonstrate their present capabilities:

X. Protocols that could already be specified/implemented using sub-regular grammars, but
not yet verified (i.e., the MPST method is sound but incomplete), can now be verified.
This includes recursive protocols in which different roles participate in different branches.

Y. Protocols that could already be specified using sub-regular grammars, can now be specified
exponentially more succinct using regular grammars.

Z. Protocols that could not yet be specified/implemented/verified using sub-regular gram-
mars, can now be specified/implemented/verified using regular grammars. This includes
protocols in which a receiver chooses the sender of the first communication, and also
protocols in which multiple roles synchronously choose both the sender and the receiver of
a next communication (implemented as mixed input/output processes, similar to select
for Go channels and POSIX sockets).

We note that the idea of this paper also improves the effectiveness of sub-regular grammars
(item X). This is because the new techniques are deliberately unspecific to regular expressions,
but general: the theory readily supports any model of behaviour directly as a global type—be
it state-based (e.g., finite automata or labelled transition systems), or event-based (e.g.,
pomsets or event structures), or logic-based (e.g., CTL or Hennessy–Milner logic)—so long
as that model can be interpreted in our general format of operational semantics. Whether or
not the usage of such models directly as global types is useful, or preferable over existing
algebraic notation, is another research question. But, the future potential seems valuable.

1 Rule [Old] is “analytic”: every process/type term that occurs in the premise of a rule must also occur as
a subterm in the conclusion. In contrast, rule [New] is “synthetic” (the dual of “analytic”; e.g., [7, 38]):
every process/type term that occurs in the premise of a rule may—but does not have to—occur as
a subterm in the conclusion. That is, meta-variable L′ occurs only in the premise, but not in the
conclusion, so it needs to be synthesised to prove well-typedness (by computing the reduction relation).

S. Jongmans and F. Ferreira 9:5

In §2, we further detail the contributions of this paper. In §3, we apply the new techniques
to sub-regular grammars. Thus, we introduce the main concepts and complications in a
familiar setting. In §4, we apply the new techniques to regular grammars. This section
is surprisingly short, which is evidence of the generality of the idea: all complications are
addressed in the familiar setting of sub-regular grammars in §3, and those results are almost
directly applicable to regular grammars in §4. A separate technical report contains proofs [43].

2 Overview of the Techniques

In this section, using several examples, we further detail the contributions of this paper. The
examples follow the three steps of the MPST method (§1), adapted to the new techniques:

1a. The programmer writes a global type G and processes P1, . . . , Pn for roles r1, . . . , rn.
1b. A tool computes the operational semantics of G and of the implicit local types G�r1, . . . ,

G�rn in the form of a termination predicate and a reduction relation for every role. Every
G�ri is an implicit local type; it does not compute an explicit one. That is, in this paper,
projection is an operator for implicit local types instead of a function on global types.

2. A tool checks if every G�ri is well-behaved. If so, then G is operationally equivalent to
G�r1, . . . , G�rn. That is, G mimics G�r1, . . . , G�rn, and vice versa. Well-behavedness of
implicit local types is a new alternative to well-formedness of global types. Importantly,
well-behavedness is fully compositional: it can be checked separately for every role.

3. A tool checks if every Pi is well-typed by G�ri. If so, then G�r1, . . . , G�rn is operationally
refined by P1, . . . , Pn. That is, G�r1, . . . , G�rn mimics P1, . . . , Pn, but not necessarily
vice versa: G�r1, . . . , G�rn may specify more behaviour than P1, . . . , Pn must implement.

2.1 Sub-Regular Grammars

In §3, we apply the new techniques of this paper to the following sub-regular grammars of
global types and processes; they are representative of existing ones in the MPST literature:

G ::= p_q :{ti .Gi}1≤i≤n
∣∣ µX.G ∣∣ X ∣∣ X

P ::=
∑
{O1, . . . , On}

∣∣ ∑{I1, . . . , Im}
∣∣ · · · O ::=

output process︷ ︸︸ ︷
q〈e〉.P I ::=

input process︷ ︸︸ ︷
p(x:t).P

The informal meanings and notational conventions are the same as in Example 1 and further
clarified in the examples in this subsection. The examples serve two purposes: to introduce
the main concepts, and to demonstrate that the idea of this paper offers distinct expressive
power, even in the familiar setting of sub-regular grammars (item X in §1.2).

I Example 2. We apply steps 1a, 1b, 2, and 3 to the Summation protocol in Example 1:

1a. The following global type and processes specifies and implement the protocol (same as in
Example 1, except the process for Carol, which is new here):

G = µX.aaa_bbb:
{

Nat.X

Unit.bbb_ccc:Nat.X

Paaa = bbb〈5〉.bbb〈6〉.bbb〈unit〉.0
Pbbb = loop(sum:Nat=0)

∑{aaa(x:Nat).recur(sum+x)
aaa(_:Unit).ccc〈x〉.0

Pccc = bbb(_:Nat).0

1b. In the style of process algebra, we define a termination predicate and a reduction relation
on global/local types to formalise their operational semantics. The following graph
visualises the operational semantics of G:

ECOOP 2023

9:6 Sound, Regular Multiparty Sessions via Implicit Local Types

aaabbb�Unit

bbbccc�Nat

aaabbb�Nat Legend:
– Nodes () represent global/local types.
– Circled nodes (), if any, represent termination.
– Edges represent reduction.

Every reduction is labelled with a global action of the form pq�t; it models a synchronous
communication of a value of data type t from role p to role q. The following graphs
visualise the operational semantics of G�aaa, G�bbb, and G�ccc (the projections of G):

bbb !Unit

τ

bbb !Nat

︸ ︷︷ ︸
G�aaa

aaa?Unit

ccc !Nat

aaa?Nat

︸ ︷︷ ︸
G�bbb

τ

bbb?Nat

τ

︸ ︷︷ ︸
G�ccc

Every reduction is labelled with a local action of the form q !t, p?t, or τ; they model a send,
a receive, or “idling” (passage of time in which a role internally waits). The operational
semantics of G�r is straightforwardly derived from the operational semantics of G, by
replacing every global action pq�t with the corresponding local action: q !t when p= r 6= q

(i.e., r is the sender), or p?t when p 6= r 6= p (i.e., r is the receiver), or τ when p 6= r 6= q

(i.e., r does not participate in the communication). We note that two τ-reductions are
superimposed in the visualisation for Carol; the details do not matter yet (see §3.2).

2. To assure that a global type is operationally equivalent to the family of projections, we
define a predicate that analyses the operational semantics of implicit local types, called
well-behavedness. An implicit local type is well-behaved when:

idling is neutral: the same reductions are possible before and after a τ-reduction;
sending is causal: a !-reduction is possible initially, or after a !-reduction, or after a
?-reduction, or after a τ-reduction when it was possible already before that τ-reduction;
receiving is deterministic: multiple ?-reductions from the same source to different
destinations must have different labels.

Thus: every send must have at least one cause; every receive must have at most one effect.
Our first main result is that if every projection is well-behaved, then the global type is
operationally equivalent to the family of projections (Theorem 23). It can be checked that
G�aaa, G�bbb, and G�ccc are well-behaved, so G is operationally equivalent to {G�aaa, G�bbb, G�ccc}.

3. To assure that a family of projections is operationally refined by a family of processes,
we define a typing relation that compares the syntax of processes with the operational
semantics of implicit local types. Roughly, P =

∑
{O1, . . . , On} is well-typed by L when:

for every Oi, if Oi = q〈e〉, then L has a q !t-reduction to L′ (modulo τ-reductions);
for every q !t-reduction of L (modulo τ-reductions), P has a subprocess Oi.

Furthermore, roughly, P =
∑
{I1, . . . , Im} is well-typed by L when:

for every Ij , if Ij = p(x:t), then L has a p?t-reduction to L′ (modulo τ-reductions);
for every p?t-reduction of L (modulo τ-reductions), P has a subprocess Ij = p(x:t).

We note that, as usual in the MPST literature, there is asymmetry between well-typedness
of selections of output processes and selections of input processes (see §3.6).
Our second main result is that if every process is well-typed by its projection, then the
family of projections is operationally refined by the family of processes (Theorem 39).
It can be checked that Paaa is well-typed by G�aaa (traverse the cycle in G�aaa twice), Pbbb is
well-typed by G�bbb, and Pccc is well-typed by G�ccc (traverse the downwards τ-reduction in
G�ccc; this is sound), so {G�aaa, G�bbb, G�ccc} is operationally refined by {Paaa, Pbbb, Pccc}.

S. Jongmans and F. Ferreira 9:7

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb, Pccc} is safe and live relative to G (Corollary 41). J

The Summation protocol is simple. However, it is not yet supported by existing techniques
based on global types and projection in the MPST literature. For instance, G in Example 2
is grammatical in the state-of-the-art papers of Majumdar et al. [54] and Van Glabbeek et
al. [65], but the projection onto Carol is undefined by Majumdar et al. and ill-formed due to
unguarded recursion by Van Glabbeek et al.; as a result, in those papers, G cannot be used
to verify processes. The following example further demonstrates the expressive power of our
development.

I Example 3. The Recursive Two Buyer protocol [62] (extension of the Two Buyer protocol
[39]) consists of roles Alice (aaa), Bob (bbb), and Seller (sss). Sequentially, it has three subprotocols:

Alice and Seller (part 1): First, the name of an item (String) is communicated from
Alice to Seller. Next, the price (Nat) is communicated from Seller to Alice.
Alice and Bob: When Alice wants to negotiate with Bob to split the price, an offer (Nat)
is communicated from her to him. Next, an acceptance (Acc) is communicated from Bob
to Alice and the subprotocol ends, or a rejection (Rej) and the subprotocol loops. When
Alice wants not to negotiate, a rejection of the sale is communicated from her to him.
Alice and Seller (part 2): When the negotiation between Alice and Bob succeeded (resp.
failed), an acceptance (resp. rejection) of the sale is communicated from Alice to Seller.

We apply steps 1a, 1b, 2, and 3 to the Recursive Two Buyer protocol:

1a. The following global type specifies the protocol:

G = aaa_sss:String.sss_aaa:Nat.µX.aaa_bbb:
{

Nat.bbb_aaa:{Acc.aaa_sss:Acc.X, Rej.X}
Rej.aaa_sss:Rej.X

The following processes implement Alice, Bob, and Seller:

Paaa = sss〈"foo"〉.sss(x:Nat).bbb〈x/2〉.
∑{bbb(_:Acc).sss〈acc〉.0

bbb(_:Rej).bbb〈x/3〉.
∑{bbb(_:Acc).sss〈acc〉.0

bbb(_:Rej).bbb〈rej〉.sss〈rej〉.0

Pbbb = loop
∑
{aaa(y:Nat).if y<=10 (aaa〈acc〉.0) (aaa〈rej〉.recur),aaa(_:Rej).0}

Psss = aaa(z:String).aaa〈price(z)〉.
∑
{aaa(_:Acc).0,aaa(_:Rej).0}

Paaa implements that Alice offers Bob to contribute half the price; when Bob rejects, Alice
offers Bob to contribute a third of the price; when Bob rejects again, Alice rejects the
sale. Pbbb implements that Bob is wiling to contribute at most ten units of currency.

1b. The following graphs visualise the operational semantics of G, G�bbb, and G�sss:

aaasss�String

sssaaa�Nat

aaabbb�Nat bbbaaa�Rej

bbbaaa�Acc

aaasss�Acc

aaabbb�Rej

aaasss�Rej︸ ︷︷ ︸
G

τ

τ

aaa?Nat aaa !Rej

aaa !Acc

τ

aaa?Rej

τ︸ ︷︷ ︸
G�bbb

aaa?String

aaa !Nat

τ τ

τ

aaa?Acc

τ

aaa?Rej︸ ︷︷ ︸
G�sss

ECOOP 2023

9:8 Sound, Regular Multiparty Sessions via Implicit Local Types

2. It can be checked that G � bbb and G � sss are well-behaved, in the same way as in Example 2.
Furthermore, G � aaa is trivially well-behaved, as Alice participates in every communication,
so the operational semantics of G � aaa has no τ-reductions. Thus, G is operationally
equivalent to {G�aaa, G�bbb, G�sss} (Theorem 23).

3. It can be checked that Paaa is well-typed by G�aaa (by twice traversing the cycle in G�aaa), Pbbb is
well-typed by G�bbb, and Psss is well-typed by G�sss. Thus, {G�aaa, G�bbb, G�sss} is operationally
refined by {Paaa, Pbbb, Psss} (Theorem 39).

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb, Psss} is safe and live relative to G (Corollary 41). J

The Recursive Two Buyer protocol was introduced by Scalas–Yoshida to demonstrate the
limitations of previous papers based on global types and projection [62]: existing techniques
do not support recursive protocols in which different roles participate in different branches.
The solution proposed by Scalas–Yoshida is to remove global types and projection from the
MPST method altogether and, instead, manually write explicit local types for Alice, Bob,
and Seller (i.e., they effectively avoid the problem instead of solving it). In contrast, using
the new techniques of this paper, we can specify such recursive protocols as global types, and
automatically extract implicit local types from them, and automatically verify processes.

2.2 Regular Grammars
In §4, we apply the new techniques of this paper to the following regular grammars:

G ::= p_q :t
∣∣ G1 + G2

∣∣ G1 · G2
∣∣ G∗ ∣∣ X P ::=

∑
{O1, . . . , On, I1, . . . , Im}

∣∣ · · ·
The informal meanings are further clarified in the examples in this subsection. The examples
serve two purposes: to evidence generality (i.e., no extra main concepts need to be introduced),
and to demonstrate that the idea of this paper offers distinct expressive power. This power
arises both in the “soft” sense (i.e., protocols that could already be specified, can now be
specified exponentially more succinct; item Y in §1.2) and in the “hard” sense (i.e., protocols
that could not yet be specified/implemented/verified, can now be; item Z in §1.2).

I Example 4. The Binomialk protocol consists of roles Alice (aaa) and Bob (bbb). A choice
between red (Red) and blue (Blu) is communicated from Alice to Bob, k times, independently.
The following global types, which are equivalent, specify the protocol for k= 3:

G = aaa_bbb:

Red.aaa_bbb:

Red.aaa_bbb:

{
Red.X

Blu.X

Blu.aaa_bbb:
{

Red.X

Blu.X

. . . (similar to the subtree above)

G = (aaa_bbb:Red + aaa_bbb:Blu) ·
(aaa_bbb:Red + aaa_bbb:Blu) ·
(aaa_bbb:Red + aaa_bbb:Blu)

Informally, global types G1 + G2 and G1 · G2 specify choice and sequencing. J

The Binomialk protocol could already be specified using existing sub-regular grammars
of global types in the MPST literature. However, due to the usage of a prefixing operator,
the size of G1 in Example 4 is exponential in k. In contrast, due to the usage of a sequencing
operator, the size of G2 in Example 4 is linear in k. Thus, the Binomialk protocol can now
be specified exponentially more succinct. The following example demonstrates that another
version of Binomialk, which could not yet be specified/implemented/verified, can now be.

S. Jongmans and F. Ferreira 9:9

I Example 5. The Role-based Binomialk protocol consists of roles Alice (aaa) and Bob (bbb). A
unit is communicated from Alice to Bob, or from Bob to Alice, k times, independently. We
apply steps 1a, 1b, 2, and 3 to the Role-based Binomialk protocol:

1a. The following global type specifies the protocol for k= 3:

G = (aaa_bbb:Unit + bbb_aaa:Unit) · (aaa_bbb:Unit + bbb_aaa:Unit) · (aaa_bbb:Unit + bbb_aaa:Unit)

The following processes implement Alice and Bob:

Paaa =
∑

bbb〈unit〉.
∑

bbb〈unit〉.
∑{bbb〈unit〉.0

bbb(_:Unit).0

bbb(_:Unit).
∑{bbb〈unit〉.0

bbb(_:Unit).0
. . . (similar to the subtree above)

Pbbb = . . . (similar to Paaa)

1b. The following graphs visualise the operational semantics of G and G�aaa:
aaabbb�Unit

bbbaaa�Unit

aaabbb�Unit

bbbaaa�Unit

aaabbb�Unit

bbbaaa�Unit︸ ︷︷ ︸
G

bbb !Unit

bbb?Unit

bbb !Unit

bbb?Unit

bbb !Unit

bbb?Unit︸ ︷︷ ︸
G�aaa

2. It can be checked that G � aaa is well-behaved, in the same way as in Example 2. Similarly,
G � bbb is well-behaved. Thus, G is operationally equivalent to {G�aaa, G�bbb} (Theorem 23).
We note that we can use the same definition of well-behavedness as in §2.1, whereas the
grammar differs: well-behavedness is independent of structure, so directly re-applicable.

3. Process P =
∑
{O1, . . . , On, I1, . . . , Im} is well-typed by L when:∑

{O1, . . . , On} is well-typed by L, in the same way as in Example 2;∑
{I1, . . . , Im} is well-typed by L, in the same way as in Example 2.

It can be checked that Paaa is well-typed by G�aaa. In particular, as Paaa consists of only three
unique subprocesses, no other subprocesses (duplicates) need to be type-checked when
memoization is used. The three unique subprocesses are well-typed by the three non-final
nodes in the visualisation of G�aaa. Similarly, Pbbb is well-typed by G�bbb. Thus, {G�aaa, G�bbb}
is operationally refined by {Paaa, Pbbb} (Theorem 39).

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb} is safe and live relative to G (Corollary 41). J

The Role-based Binomialk protocol could not yet be specified/implemented/verified in
previous papers in the MPST literature: existing techniques do not support protocols in which
multiple roles synchronously choose both the sender and the receiver of a next communication.
In contrast, using the new techniques of this paper, we can specify such protocols (e.g., G in
Example 5), implement them as mixed input/output processes (e.g., Paaa and Pbbb in Example 5),
and verify. The following example further demonstrates mixed input/output, and more.

I Example 6. The Acquire–Use–Release protocol consists of roles Alice (aaa), Bob (bbb), and
Server (sss). Concurrently, it has three subprotocols:

Alice and Server (AS): First, an “acquire” message (Acq) is communicated from Alice
to Server. Next, a “permission” message (Perm) is communicated from Server to Alice.
Next, zero or more “usage” messages (Use) are communicated from Alice to Server. Last,
a “release” message (Rel) is communicated from Alice to Server.

ECOOP 2023

9:10 Sound, Regular Multiparty Sessions via Implicit Local Types

Bob and Server (BS): Similar to AS.
Mutual Exclusion (ME): Between sending “permission” and receiving “release”, Server
cannot send another “permission”, thereby constraining the interleaving of AS and BS.

We apply steps 1a, 1b, 2, and 3 to the Acquire–Use–Release protocol:
1a. The following global type specifies the protocol:

G = +

aaa_sss:Acq · +

sss_aaa:Perm · aaa_sss:Use∗ · +

{
aaa_sss:Rel · bbb_sss:Acq · G′2
bbb_sss:Acq · aaa_sss:Use∗ · aaa_sss:Rel · G′2

bbb_sss:Acq · +
{
G′1 · G′2
G′2 · G′1

bbb_sss:Acq · . . . (similar to the subtree above)

G′1 = sss_aaa:Perm · aaa_sss:Use∗ · aaa_sss:Rel G′2 = sss_bbb:Perm · bbb_sss:Use∗ · bbb_sss:Rel

The following processes implement Alice, Bob, and Server:
Paaa = sss〈acq〉.sss(_:Perm).sss〈use〉.sss〈use〉.sss〈use〉.sss〈rel〉.0
Pbbb = sss〈acq〉.sss(_:Perm).sss〈use〉.sss〈rel〉.0

Psss =
∑{aaa(acq1:Acq).

∑
bbb(_:Acq).(· · ·)

{
aaa〈perm〉.loop

∑
bbb(acq2:Acq).P ′′sss

aaa(_:Use).recur
aaa(_:Rel).bbb(_:Acq).(· · ·)
bbb(_:Acq).(· · ·)

(version 1) P ′′sss =
∑
{aaa〈perm〉.(· · ·),bbb〈perm〉.(· · ·)}

(version 2) P ′′sss = if alice_goes_first(acq1,acq2) (aaa〈perm〉.(· · ·)) (bbb〈perm〉.(· · ·))
(version 3) P ′′sss = aaa〈perm〉.(· · ·)

Version 1 of P ′′sss implements that, after receiving an “acquire” message from both Alice
and Bob, Server chooses non-deterministically between sending a “permission” message to
Alice or Bob. Versions 2 and 3 of P ′′sss implement that Server chooses deterministically. We
note that the second choice in Psss is between a send and a receive (mixed input/output).

1b. The following graphs visualise the operational semantics of G and G�aaa:

aaasss�Acq sssaaa�Perm aaasss�Rel

aaasss�Acq sssaaa�Perm aaasss�Rel

aaasss�Acq

aaasss�Acq sssaaa�Perm aaasss�Rel

aaasss�Use

aaasss�Use

aaasss�Use

bbbs ss�Acq
s ssb bb�Perm

b bbs ss�Rel

b bbs ss�Acq
s ssb bb�Perm

b bbs ss�Rel

b bbs ss�Acq

b bbs ss�Acq
s ssb bb�Perm

b bbs ss�Rel

b bbs ss�Use

b bbs ss�Use

b bbs ss�Use

︸ ︷︷ ︸
G

sss !Acq sss?Perm sss !Rel

sss !Acq sss?Perm sss !Rel

sss !Acq

sss !Acq sss?Perm sss !Rel

sss !Use

sss !Use

sss !Use

τ
τ

τ

τ
τ

τ

τ τ
τ

τ

τ τ τ

︸ ︷︷ ︸
G�aaa

The dash pattern on the vertical edges is unimportant at this point (see Example 9).
2. It can be checked that G � aaa is well-behaved, in the same way as in Example 2. Similarly,

G � bbb is well-behaved. Furthermore, G � sss is trivially well-behaved, as Server participates
in every communication, so the operational semantics of G � sss has no τ-reductions. Thus,
G is operationally equivalent to {G�aaa, G�bbb, G�sss} (Theorem 23).

S. Jongmans and F. Ferreira 9:11

3. It can be checked that Paaa is well-typed by G�aaa, Pbbb is well-typed by G�bbb, and Psss

is well-typed by G�sss. Thus, {G�aaa, G�bbb, G�sss} is operationally refined by {Paaa, Pbbb, Psss}
(Theorem 39).

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb, Psss} is safe and live relative to G (Corollary 41). J

The Role-based Acquire–Use–Release protocol could not yet be specified/implemented/
verified in previous papers in the MPST literature: existing techniques do not support
protocols in which a receiver chooses the sender of the first communication. In contrast,
using the new techniques of this paper, we can specify such protocols (e.g., G in Example 6),
implement them as processes (e.g., Paaa, Pbbb, and Psss in Example 5), and verify.

In this paper, projection (including well-behavedness) and type checking are independent
of the syntax of global types; they are dependent only on the operational semantics. The
formulations and proofs of our main results are similarly independent. As a result of this
independence, our regular grammar of global types is actually “open ended”: it can be
readily extended with additional global type operators (closed under regularity), intended
to serve as higher-level abstractions to make the specification of protocols easier. As a first
demonstration of this extensibility, we freely add the following operators:

G ::= · · ·
∣∣ G1 ; G2

∣∣ G1 ‖ G2
∣∣ G1 on G2

∣∣ [G]γ1
γ2

∣∣ · · ·
I Example 7. The following global type specifies that units are communicated first between
Alice, Bob1, and Carol1, and second between Alice, Bob2, and Carol2, in that order; the
communication from Bob1 to Carol1, and the communication from Bob2 to Carol2, may
happen out-of-order, though.

G = (aaa_b1b1b1:Unit · b1b1b1_c1c1c1:Unit) ;
(aaa_b2b2b2:Unit · b2b2b2_c2c2c2:Unit)

Informally G1 ;G2 specifies a “weak” sequence: it is similar to G1 ·G2, except that independent
communications in G1 and G2 (when disjoint roles participate) can happen out-of-order. J

I Example 8. We re-apply steps 1a, 1b, 2, and 3 to the Acquire–Use–Release protocol:

1a. The following global type, which is equivalent to G in Example 6, specifies the protocol:

G = (GAS ‖ GBS) on GME

GAS = aaa_sss:Acq · sss_aaa:Perm · aaa_sss:Use∗ · aaa_sss:Rel

GBS = bbb_sss:Acq · sss_bbb:Perm · bbb_sss:Use∗ · bbb_sss:Rel

GME = +
{

sss_aaa:Perm · aaa_sss:Rel · sss_bbb:Perm

sss_bbb:Perm · bbb_sss:Rel · sss_aaa:Perm

Informally, global types G1 ‖ G2 and G1 on G2 specify interleaving and join. In general,
join demands that every role complies with both of its operands. In this example, join
specifies that subprotocol ME in Example 6 constrains the interleaving of subprotocols
AS and BS. That is, the three subprotocols are modularly specified as global types GAS,
GBS, and GME, and composed as intended using ‖ and on; the result is an exponentially
more succinct—and arguably easier to write—specification than in Example 6.
The same processes Paaa, Pbbb, and Psss, with any version of P ′′sss , as in Example 6 are used.

1b. The same graphs as in Example 6 visualise the operational semantics of G and G�aaa.
2. As in Example 6, G is operationally equivalent to {G�aaa, G�bbb, G�sss}.
3. As in Example 6, {G�aaa, G�bbb, G�sss} is operationally refined by {Paaa, Pbbb, Psss}. J

ECOOP 2023

9:12 Sound, Regular Multiparty Sessions via Implicit Local Types

Table 1 Example protocols of Van Glabbeek et al. [65] and Scalas–Yoshida [62]

name global type
Example 9 [vG21] G = (bbb_sesese:Talk)∗ · bbb_sesese:Buy · sesese_shshsh:Order
Example 13 [vG21] G = ((b1b1b1_s1s1s1:Wait)∗ · b1b1b1_s1s1s1:Order) ‖ ((b2b2b2_s2s2s2:Wait)∗ · b2b2b2_s2s2s2:Order)
Example 15 [vG21] G = (bbb_s1s1s1:Order1 · bbb_s2s2s2:Wait)∗ · bbb_s2s2s2:Order2 · bbb_s1s1s1:Done
OAuth2 [SY19] G = (sss_ccc:Login · ccc_aaa:Passwd · aaa_sss:Auth) + (sss_ccc:Cancel · ccc_aaa:Quit)
Rec. map/reduce [SY19] G = G1 · (rrr_mmm:Continue · G1)∗ · rrr_mmm:Stop · mmm_w1w1w1:Stop

G1 = mmm_w1w1w1:Datum · w1w1w1_rrr:Result
MP workers [SY19] G = sss_wa1wa1wa1:Datum · (G1 ‖ (sss_wa2wa2wa2:Datum · G2))

G1 = (wa1wa1wa1_wb1wb1wb1_wc1wc1wc1:Datum · wc1wc1wc1_wa1wa1wa1:Result)∗ · wa1wa1wa1_wb1wb1wb1_wc1wc1wc1:Stop
G2 = (wa2wa2wa2_wb2wb2wb2_wc2wc2wc2:Datum · wc2wc2wc2_wa2wa2wa2:Result)∗ · wa2wa2wa2_wb2wb2wb2_wc2wc2wc2:Stop

I Example 9. We apply steps 1a, 1b, 2, and 3 to a restricted version of the Acquire–Use–
Release protocol in which, after receiving an “acquire” message from both Alice and Bob,
Server must send a “permission” message first to Alice and second to Bob (static order):

1a. The following global type specifies the protocol:

G = [(GAS ‖ GBS) on GME]aaasss�Perm
bbbsss�Perm GAS, GBS, GME = . . . (same as in Example 8)

Informally, global type [G]γ1
γ2 specifies the prioritisation of global action γ1 (superscript

indicates “high” priority) over global action γ2 (subscript indicates “low” priority) in G.
The same processes Paaa, Pbbb, and Psss, with version 3 of P ′′sss , as in Example 6 are used.

1b. The same graphs as in Example 6 visualise the operational semantics of G and G�aaa, but
without the dashed edges.

2. As in Example 6, G is operationally equivalent to {G�aaa, G�bbb, G�sss}.
3. As in Example 6, {G�aaa, G�bbb, G�sss} is operationally refined by {Paaa, Pbbb, Psss}. J

I Remark 10. Merging has historically been crucial to support sufficiently expressive kinds
of choice in the MPST literature, but it is not needed in this paper. Instead, the issues
that merging-based well-formedness of global types address, are covered by well-behavedness
of implicit local types. Example 2 and Example 3 already demonstrated this point. To
further illustrate it, Table 1 lists global types for examples of Van Glabbeek et al. [65] and
Scalas–Yoshida [62]: the examples of van Glabbeek et al. require merging; the examples of
Scalas–Yoshida require a more advanced concept (i.e., they use these examples to demonstrate
limitations of merging). Every projection of every global type in Table 1 is well-behaved. J

3 Sub-Regular Grammars

In this section, we apply the new techniques for projection and type checking to sub-regular
grammars of global types and processes; they are representative of existing ones in the MPST
literature. Thus, we introduce the main concepts and complications in a familiar setting.

As this paper is about “processes that communicate” instead of “data that are commu-
nicated”, we leave the data language largely unspecified, except for some notation:

Syntax: Let X denote a set of variables, ranged over by x. Let V = {true, false, 0, 1,
2, . . .} denote a set of values, ranged over by v. Let E = X∪V∪ {!false, 2+3, . . .} denote
a set of expressions, ranged over by e. Let e[v/x] denote substitution of v for x in e.
Static semantics: Let T = {Bool, Nat, . . .} denote a set of data types, ranged over by t.
Let (X× T)∗ denote the set of data typing contexts (i.e., lists of variable–type pairs),
ranged over by Ξ. Let Ξ ` e : t denote well-typedness of e by t in Ξ.

S. Jongmans and F. Ferreira 9:13

X ↓ [↓G-End]

G ↓
G�r ↓ [↓L-At]

Lr ↓ for every r
{Lr}r∈R ↓

[↓L]

(a) Termination

1 ≤ i ≤ n

p_q :{ti .Gi}1≤i≤n
pq�ti−−−→ Gi

[→G-Com]
G[µX.G/X] γ−→ G′

µX.G
γ−→ G′

[→G-Rec]

G
γ−→ G′

G�r
γ�r−−→ G′�r

[→L-At] pq�t�r =

pq !t if: p = r 6= q

pq?t if: q 6= r = q

τ if: p 6= r 6= q

L
τ−→ L′ 6 ↓

L′
τ−→ L

[→L-Rev]

Lp
pq !t−−−→ L′p Lq

pq?t−−−→ L′q
Lr = L′r for every r /∈ {p, q}

{Lr}r∈R
pq�t−−−→ {L′r}r∈R

[→L1]

Lr̄
τ−→ L′r̄

Lr = L′r for every r /∈ {r̄}
{Lr}r∈R

τ−→ {L′r}r∈R
[→L2]

(b) Reduction. Let G[µX.G/X] denote unfolding of X into µX.G in G.

Figure 3 Operational semantics of sub-regular global/local types

Dynamic semantics: Let eval(e) denote evaluation of e; it can be undefined. For instance,
eval(2+3) = 5, but eval(2+true) is undefined. Undefinedness of eval(e) is a form of “going
wrong” [55]; it can give rise to deadlock (Remark 33), prevented by well-typedness (§3.7).

3.1 Global Types – Syntax
Below, we define the grammar of global/local types and abstract global/local actions.

I Definition 11. Let R denote a set of roles, ranged over by p, q, r. Let G and L denote the
sets of global types and (implicit) local types, ranged over by G and L; they are induced by
the following grammar:

G ::= p_q :{ti .Gi}1≤i≤n
∣∣ µX.G ∣∣ X ∣∣ X L ::= G�r

Let R⇀ L denote the set of role-indexed families of local types (partial functions), ranged
over by L. Let S = G ∪ L ∪ (R⇀ L) denote the set of specifications, ranged over by S. J

Global type p_q :{ti .Gi}1≤i≤n specifies the synchronous communication of a value of
data type ti from role p to role q, for some 1≤ i≤n. Global types µX.G and X specify
a recursive protocol. Global type X specifies the empty protocol. Local type G�r specifies
the projection of G onto r. Thus, projection is a local type operator instead of a function
on global types: G�r does not compute an explicit local type; it is an implicit one. The
programmer does not write implicit local types directly, but only global types.

I Definition 12. Let Γ = {(pq !t, pq?t) | p 6= q} and Λ =
⋃
{{pq !t, pq?t} | p 6= q} ∪ {τ}

denote the sets of (abstract) global actions and (abstract) local actions, ranged over by γ and
λ. Let A = Γ ∪Λ denote the set of (abstract) actions, ranged over by α. J

Local actions pq !t and pq?t model the send and the receive of a value of data type t from
role p to role q; we omit p or q when it is clear from the context. Local action τ models
internal idling. Global action (pq !t, pq?t) models a communication; we often write pq�t.

3.2 Global Types – Operational Semantics
Below, we define the termination predicate and reduction relation on global/local types.

I Definition 13. Let G ↓, L ↓, and L ↓ denote termination of G, L, and L. Formally, ↓ is
the predicate induced by the rules in Figure 3a, while 6 ↓ is its complement (not derivable). J

I Definition 14. Let G γ−→ G′, L λ−→ L′, and L λp,λq−−−→ L′ denote reduction from G to G′ with
γ, from L to L′ with λ alone, and from L to L′ with λp and λq together (synchronously); we

ECOOP 2023

9:14 Sound, Regular Multiparty Sessions via Implicit Local Types

omit the label and/or the destination of a reduction if it does not matter. Formally, → is the
relation induced by the rules in Figure 3b, while 6→ is its complement (not derivable). J

Rule [→G-Com] states that a communication can reduce with a global action chosen from
the alternatives. Following the recent paper of Gheri et al. [34], and for the same reason
as them, we omit a reduction rule for out-of-order execution of independent global actions;
its interplay with recursion may give rise to infinite reduction relations (e.g., [34, Exmp.
5.1]). We recover out-of-order execution in §4, as already demonstrated in Example 7.
Rule [→G-Rec] states that a recursive protocol can reduce when its body can.
Rule [→L-At] states that a projection can reduce when the global type can.
Rule [→L-Rev] states that a τ-reduction into a non-terminated branch can be reversed:
after “doing nothing” (the τ-reduction from L to L′), a role is always permitted to
backtrack by “doing more nothing” (the reverse). This rule ensures that a role r cannot
commit—unilaterally and irrevocably—to a future communication with another role r′
by internally “doing nothing” (i.e., morally, the decision to communicate cannot be made
by r alone, but only together with r′, so r should not be able to make a premature
commitment and get stuck). Conversely, it can commit to local termination by internally
“doing nothing” (i.e., morally, the decision to locally terminate can be made by r alone).

I Example 15. The following global type specifies that either a number is communicated
from Alice to Bob, and from Bob to Carol, or a boolean:

G = aaa_bbb:{Nat.bbb_ccc:Nat.X, Bool.bbb_ccc:Bool.X}

The following graph visualises the operational semantics of G and G�ccc:
bbbccc�Nat aaabbb�Nat aaabbb�Bool bbbccc�Bool︸ ︷︷ ︸

G

bbbccc?Nat
τ τ

bbbccc?Bool︸ ︷︷ ︸
G�ccc

Dashed edges represent reductions induced by rule [→L-Rev].
Without the τ-reductions of rule [→L-Rev], for instance, Carol can commit to the receive
of a number by internally “doing nothing” (τ-reduction leftwards). Morally, however, this
decision cannot be made by Carol alone, but only together with Bob (depending, in turn,
on his previous communication with Alice). With the τ-reductions of rule [→L-Rev], in
contrast, Carol cannot commit: after the τ-reduction leftwards, there is still a sequence
of τ-reductions rightwards (which Carol can freely make, because they are internal to her,
unobservable to Alice and Bob) to receive a boolean. J

Rules [→L1] and [→L2] state that a family can reduce, when two local types can reduce
with a matching send/receive pair (synchronously), or when one can reduce by idling.

The following propositions state basic properties of the operational semantics.

I Proposition 16 (type-level progress). G ↓, or G −→ (for every G). J

I Proposition 17 (type-level finiteness). |{G† | G −→ · · · −→ G†}| ∈ N (for every G). J

Type-level progress and finiteness, which follow straightforwardly from Figure 3, will be used
to assure liveness of families of well-typed processes and decidability of type checking.

Recall that S ranges over global types, local types, and families of local types (Defini-
tion 11), and α over global actions and local actions (Definition 12):

Let S =⇒ S† denote τ-reachability from S to S†: either S=S†, or S τ−→ · · · τ−→ S†.
Let S ⇓ denote weak termination of S: S =⇒ S† ↓, for some S†.
Let S α=⇒ S¶ denote weak reduction from S to S¶ with α: either α = τ and S =⇒ S¶, or
S =⇒ S†

α−→ S‡ =⇒ S¶, for some S†, S‡.

S. Jongmans and F. Ferreira 9:15

As a notational convention, we use “′” to indicate destinations after 1 reduction, while we
use “†”, “‡”, “§”, and “¶” to indicate destinations after 0-or-more reductions.

3.3 Main Result 1: Well-Behavedness Implies Operational Equivalence
Intuition The following global type specifies that a unit is communicated first from Alice to
Bob, and second from Carol to Dave, in-order: aaa_bbb:Unit.ccc_ddd:Unit.X (i.e., the independent
actions of Alice–Bob and Carol–Dave cannot be executed out-of-order according to the
operational semantics in Figure 3; we recover out-of-order execution in §4). However, this
protocol is unrealisable: fundamentally, it cannot be implemented as a family of processes
without additional covert synchronisation between Bob–Carol. This makes the global type
effectively useless. Thus, we need a decision procedure to distinguish “bad” global types
from “good” global types, to be able to rule out the bad ones from usage. To achieve this,
we define sufficient conditions to ensure that a global type is operationally equivalent to the
family of projections. That is, operational equivalence formalises protocol realisability.

Instead of defining the conditions on the syntax of global types in terms of well-formedness
(as usual), we define the conditions on the operational semantics of implicit local types in
terms of well-behavedness. If the operational semantics of every projection of a global type
satisfies every condition, then operational equivalence is guaranteed. Conversely, if the
operational semantics of any projection violates any condition, then the global type is ruled
out. Well-behavedness is fully compositional: it can be checked separately for every role.
I Remark 18. A key advantage of well-behavedness of implicit local types over well-formedness
of global types is that it allows us to prove the main results independently of the set of global
type operators. Thus, the grammar can be extended with new global type operators (such
that Propositions 16–17 continue to be valid) without reproving the theorems (§4). J

Before defining them formally, we informally introduce the main well-behavedness conditions:

C1. Idling is neutral: A local type must always have the same weak termination/reductions
before τ-reductions as after them. This means that a role can neither increase nor decrease
its behavioural alternatives by idling.

C2. Sending is causal: A local type must always have the same strong !-reductions before
τ-reductions as after them. This means that if a role can send after idling (later in the
future), then it can also send immediately (already in the present). That is, the ability
to send cannot arise out of “doing nothing”; there must be an observable cause.

C3. Receiving is deterministic: A local type must never have multiple weak ?-reductions
with the same label but different destinations. This means that if a role receives, then its
continuation is uniquely determined. Conditions C2 and C3 yield the following duality:
every send must have at least one cause; every receive must have at most one effect.

I Example 19. We illustrate the conditions with three problematic cases, each of which
demonstrates a different reason for operational inequivalence. In each case: first, we define a
bad global type that specifies an unrealisable protocol; next, we visualise the operational
semantics of it and the projections; next, we argue that they are indeed inequivalent; last,
we state the well-behavedness condition that is violated by at least one projection.

C1. If G1 = aaa_bbb:{Nat.bbb_ccc:Nat.X, Unit.X}, then:

aaabbb�Nat
bbbccc�Nat

aaabbb�Unit

︸ ︷︷ ︸
G1

bbb !Nat
τ

bbb !Unit

︸ ︷︷ ︸
G1�aaa

aaa?Nat
ccc !Nat

aaa?Unit

︸ ︷︷ ︸
G1�bbb

τ

bbb?Nat
τ

︸ ︷︷ ︸
G1�ccc

ECOOP 2023

9:16 Sound, Regular Multiparty Sessions via Implicit Local Types

The global type cannot be stuck after weak reduction aaabbb�Nat====⇒: it can always reduce
onwards. In contrast, the family of projections can be stuck after weak reduction aaabbb�Nat====⇒,
namely when G1�ccc weakly reduced rightwards instead of leftwards. In that case, G1�bbb
neither can terminate, nor can reduce onwards (i.e., it needs to synchronise its !-reduction
with a ?-reduction of G1�ccc, but G1�ccc has become unable to reciprocate). Thus, G1 and
{G1�r}r∈{aaa,bbb,ccc} are inequivalent. This is caught by C1: G1�ccc has a weak ?-reduction
before the rightwards τ-reduction, but not after it, which violates C1 (i.e., idling is
non-neutral), so G1 is ruled out from usage.

C2. If G2 = aaa_bbb:Unit.ccc_ddd:Unit.X, then:

aaabbb�Unit

cccddd�Unit︸ ︷︷ ︸
G2

bbb !Unit

τ︸ ︷︷ ︸
G2�aaa

aaa?Unit

τ︸ ︷︷ ︸
G2�bbb

τ

ddd !Unit︸ ︷︷ ︸
G2�ccc

τ

ccc?Unit︸ ︷︷ ︸
G2�ddd

The global type can terminate only after weak reductions aaabbb�Unit====⇒ cccddd�Unit====⇒. In contrast,
the family of projections can terminate also after weak reductions cccddd�Unit====⇒ aaabbb�Unit====⇒, when
G2�ccc and G2�ddd begin with τ−→ ddd !Unit−−−−→ and τ−→ ccc?Unit−−−−→, and when G2�aaa and G2�bbb end with
bbb !Unit−−−−→ τ−→ and aaa?Unit−−−−→ τ−→. Thus, G2 and {G2�r}r∈{aaa,bbb,ccc,ddd} are inequivalent. This is caught
by C2: G2�ccc does not have a !-reduction before its τ-reduction, but it does have one
after it, which violates C2 (i.e., sending is non-causal), so G2 is ruled out from usage.
We note that if we allowed out-of-order execution of independent global actions, then
G2 would satisfy C2. We recover out-of-order execution in §4. The corresponding global
type will be aaa_bbb:Unit ; ccc_ddd:Unit, each of whose projections will be well-behaved.

C3. If G3 = aaa_bbb:{Bool.bbb_ccc:Unit.ccc_bbb:Bool.X, Nat.bbb_ccc:Unit.ccc_bbb:Nat.X}, then:

aaabbb�Bool

bbbccc�Unit

cccbbb�Bool

aaabbb�Nat

bbbccc�Unit

cccbbb�Nat︸ ︷︷ ︸
G3

bbb !Bool

τ

τ

bbb !Nat

τ

τ︸ ︷︷ ︸
G1�aaa

aaa?Bool

ccc !Unit

ccc?Bool

aaa?Nat

ccc !Unit

ccc?Nat︸ ︷︷ ︸
G1�bbb

τ

bbb?Unit

bbb !Bool

τ

bbb?Unit

bbb !Nat︸ ︷︷ ︸
G1�ccc

The global type cannot be stuck after weak reductions aaabbb�Bool====⇒ bbbccc�Unit====⇒: it can always
reduce onwards. In contrast, the family of projections can be stuck after weak reductions
aaabbb�Bool====⇒ bbbccc�Unit====⇒, namely when G1�ccc weakly reduced rightwards instead of leftwards. In
that case, G3�bbb neither can terminate, nor can reduce onwards (i.e., it needs to synchronise
its ccc?Bool-reduction with a bbb !Bool-reduction of G3�ccc, but G3�ccc has become unable to
reciprocate). Thus, G3 and {G3�r}r∈{aaa,bbb,ccc} are inequivalent. This is caught by condition
C3: G3�ccc has two weak ?-reductions with the same label, but to different destinations,
which violates C3 (i.e., receiving is non-deterministic), so G3 is ruled out from usage. J

We relate the well-behavedness conditions on implicit local types in this paper to well-
formedness conditions on global types in the MPST literature in the terminology of Castagna
et al. [20]. Condition C1 is usually enforced through projection (i.e., projection determinises
explicit local types as they are computed, without using τ-based operators). Condition C2 is
the sequentiality principle of Castagna et al.; it is usually enforced by allowing out-of-order
execution of independent global actions. Condition C3 is the knowledge for choice principle
of Castagna et al. (i.e., a receiver must always be able to uniquely determine which branch
the sender was in); it is usually enforced through merging. We note that well-behavedness is

S. Jongmans and F. Ferreira 9:17

relatively permissive regarding branching (some non-directed and non-located choice patterns
are allowed), whereas well-formedness is relatively restrictive (all such patterns are forbidden).

Technicalities First, we define operational equivalence as a relation ≈ on specifications
(global types, local types, and families of local types). We derive the following requirements
from Example 19: (a) ≈ must be insensitive to idling (i.e., we argued in terms of weak
reductions); (b) ≈ must be sensitive to deadlock (i.e., we distinguished between termination
and “being stuck”). Out of many candidates [66,67], we adopt weak bisimilarity (e.g., [68]):
it meets both requirements a and b; additionally, it is sensitive to branching, which is not
a requirement, but which makes our proofs easier. Intuitively, two specifications are weak
bisimilar when they can mimick each other’s termination/reductions modulo τ-reductions.

I Definition 20. Recall that S denotes the set of all global types, local types, and families of
local types, ranged over by S. A weak bisimulation ♥ ⊆ S× S is a relation that satisfies the
following conditions, for every (S1, S2) ∈ ♥, (and for every S¶1 , S¶2 , α):

If S1 ⇓, then S2 ⇓.
If S2 ⇓, then S1 ⇓.

If S1
α=⇒ S¶1 , then S¶1 ♥ S¶2 and S2

α=⇒ S¶2 , for some S¶2 .
If S2

α=⇒ S¶2 , then S¶1 ♥ S¶2 and S1
α=⇒ S¶1 , for some S¶1 .

Let S1 ≈ S2 denote weak bisimilarity. Formally, ≈ is the largest weak bisimulation. J

Next, we define well-behavedness by formalising the main conditions (plus two more).

I Definition 21. Let wb(L) denote well-behavedness of L. Formally, it is the largest predicate
that satisfies the following conditions, for every L ∈ wb (and for every L′, L†, L†1, L†2, p, q, t):

C1. If L =⇒ L†, then L ≈ L†. [If L† is τ-reachable, then L and L† are weak bisimilar.]
C2. If L pq !t==⇒ L†, then L pq !t−−−→≈ L†. [If L has a weak !-reduction to L†, then it has the same

strong !-reduction to a weak bisimilar destination.]
C3. If L pq?t==⇒ L†1 and L pq?t==⇒ L†2,

then L†1 ≈ L†2.
[If L has the same weak ?-reductions to L†1 and L†2,
then L†1 and L†2 are weak bisimilar.]

C4. If L −→, then L 6 ↓. [If L can reduce, then it cannot terminate.]
C5. If L −→ L′, then wb(L′). [Reduction preserves well-behavedness.] J

Last, we prove that the conditions of well-behavedness are sufficient to ensure operational
equivalence. The idea is to define a correspondence relation between global types and families
of well-behaved local types. We can then show that correspondence is a weak bisimulation.

I Definition 22. Let G - {Lr}r∈R denote correspondence of G and {Lr}r∈R. Formally:[
wb(G�r) and wb(Lr) and G�r ≈ Lr

]
for every r ∈ R

G - {Lr}r∈R
J

I Theorem 23 (equivalence). If wb(G�r), for every r ∈ R, then G ≈ {G�r}r∈R. J

The proof of this main result is based on two auxiliary lemmas. They state that well-
behavedness implies correspondence, and that correspondence implies weak bisimilarity.

I Lemma 24. If wb(G�r), for every r ∈ R, then G - {G�r}r∈R. J

I Lemma 25. If G - {Lr}r∈R, then G ≈ {Lr}r∈R. J

The first lemma follows directly from the definition of correspondence and the reflexivity of
weak bisimilarity. The proof of the second lemma relies on the definition of well-behavedness.

ECOOP 2023

9:18 Sound, Regular Multiparty Sessions via Implicit Local Types

I Remark 26. Theorem 23 depends on premise wb(G�r). To see that checking this premise
is decidable, observe that the reduction relation of G is finite by Proposition 17. As the
reduction relation of G�r has exactly the same structure by rules [↓L-At] and [→L-At], and
at most linearly many extra τ-transition by rule [→L-Rev], it is finite as well. Consequently,
checking well-behavedness (including weak bisimilarity [1]) of G�r is trivially decidable. J
I Remark 27. As an alternative to Theorem 23, of course, it is also possible to check weak
bisimilarity between G and {G�r}r∈R directly. However, this would require one to compute
the reduction relation of {G�r}r∈R, which is exponentially large in the worst case. In contrast,
as well-behavedness is fully compositional, such a computation is avoided. Thus, direct weak
bisimilarity is of exponential complexity (in the size of the reduction relations), whereas
well-behavedness is of linear complexity and, as a result, better scalable to many roles. J

3.4 Processes – Syntax
Below, we define the grammar of processes and concrete local actions.

I Definition 28. Let O, I, and P denote the sets of output processes, input processes, and
processes, ranged over by O, I, and P ; they are induced by the following grammar:

P ::=
∑
{O1, . . . , On}

∣∣ ∑{I1, . . . , Im}
∣∣

if e P1 P2
∣∣ loop P

∣∣ recur
∣∣ 0

O ::= q〈e〉.P I ::= p(x:t).P

Let R⇀ P denote the set of role-indexed families of processes, ranged over by P. J

Output process pq〈e〉.P implements the send of the value of expression e from role p to
role q; we omit p when it is clear from the context. Input process pq(x:t).P implements the
receive of a value of data type t into variable x from role p to role q; we omit q when it is clear
from the context; we omit “:t” when the data type does not matter. Processes

∑
{O1, . . . , On}

and
∑
{I1, . . . , Im} implement non-deterministic selections of n output processes (sends) and

m input processes (receives); we omit “
∑

” and braces when n=m= 1. Process if e P1 P2
implements a conditional choice. Processes loop P and recur implement a loop. Process
0 implements the empty process. We note that data parameters can be added to loops in
the standard way (e.g., [62]). Process creation and session creation are orthogonal to the
contributions of this paper and thus we omit them.
I Remark 29. We stipulate that every process is guarded (i.e., recur occurs only inside∑

-processes) and closed (i.e., recur occurs only inside loop-processes), while every family
{Pr}r∈R is well-formed (i.e., for every r ∈ R, every output process that occurs in Pr is of
the form rq〈e〉.P ′, while every input process is of the form pr(x:t).P ′). J

I Definition 30. Let Π =
⋃
{{pq !v, pq?v} | p 6= q} denote the set of (concrete) local actions,

ranged over by π. J

3.5 Processes – Operational Semantics
Below, we define the termination predicate and reduction relation on processes.

I Definition 31. Let P ↓ and P ↓ denote termination of P and P. Formally, ↓ is the
predicate induced by the rules in Figure 4a. J

I Definition 32. Let P π−→ P ′ and P πp,πq−−−→ P ′ denote reduction from P to P ′ with π alone,
and from P to P ′ with πp and πq together (synchronously). Formally, → is the relation
induced by the rules in Figure 4b. J

S. Jongmans and F. Ferreira 9:19

0 ↓ [↓P-End]

Peval(e) ↓
if e Ptrue Pfalse ↓

[↓P-If]

P [loop P/recur] ↓
loop P ↓ [↓P-Loop]

Pr ↓ for every r
{Pr}r∈R ↓

[↓P]

(a) Termination

pq〈e〉.P ∈ {O1, . . . , On}∑
{O1, . . . , On}

pq !eval(e)−−−−−−→ P
[→P-Sum1]

pq(x:t).P ∈ {I1, . . . , Im} ` v : t∑
{I1, . . . , Im}

pq?v−−−→ P [v/x]
[→P-Sum2]

Peval(e)
π−→ P ′

if e Ptrue Pfalse
π−→ P ′

[→P-If]
P [loop P/recur] π−→ P ′

loop P
π−→ P ′

[→P-Loop]

Pp
pq !v−−−→ P ′p Pq

pq?v−−−→ P ′q Pr = P ′r for every r /∈ {p, q}

{Pr}r∈R
pq�v−−−→ {P ′r}r∈R

[→P]

(b) Reduction

Figure 4 Operational semantics of sub-regular processes. Let P [v/x] denote capture-avoiding
substitution of v for x in P . Let P [loop P/recur] denote unfolding of recur into loop P in P .

Rule [→P-Sum1] (resp. [→P-Sum2]) states that a selection can reduce with a send
(resp. receive) when there is a corresponding output process (resp. input process) among
the alternatives and eval(e) is defined (resp. v is well-typed by t and bound to x). Rule
[→P-If] states that a conditional choice can reduce when eval(e) ∈ {true, false} and the
corresponding branch can reduce. Rule [→P-Loop] states that a recursive loop can reduce
when its body can. Rule [→P] states that a family can reduce when two processes can reduce
with a matching send/receive pair (synchronously).

I Remark 33. Figure 4 contains no rules for communication errors: “going wrong” manifests
as deadlock. There are three situations in which this can happen for a process P or family P :

If P = if eP1P2, but eval(e) /∈ {true, false}, then rules [↓P-If]/[→P-If] are inapplicable.
If P =

∑
{p1q1〈e1〉.P1, . . . , pnqn〈en〉.Pn} and n> 1, but eval(ei) is undefined for every

1≤ i≤n, then rule [→P-Sum1] is inapplicable.
If not all processes in P can terminate, while no two processes in P can reduce with a
matching send and receive, then rules [↓P]/[→P] are inapplicable.

In each situation, P or P cannot terminate/reduce. Well-typedness will prevent this. J

3.6 Main Result 2: Well-Typedness Implies Operational Refinement
Now comes the pivotal concept among our contributions: the typing rules are based on
the operational semantics of implicit local types instead of on their syntax. That is, the
termination predicate and the reduction relation on local types are used not only “a posteriori”
to prove type soundness (as usual), but also “a priori” to define the typing rules. This allows
us to break the historically tight correspondence between the structure of global/local types
and the structure of processes (§1.2).

I Definition 34. Recall that (X× T)∗ denotes the set of data typing contexts, ranged over
by Ξ. Let (recur × L)∗ denote the set of process typing contexts, ranged over by Υ . Let
Ξ, Υ ` O : L, Ξ, Υ ` I : L, Ξ, Υ ` P : L and ` P : L denote well-typedness of O, I, P by L
in Ξ, Υ , and of P by L. Formally, ` is the relation induced by the rules in Figure 5. J

Rule [`-End] states that the empty process is well-typed when the local type can weakly
terminate. Rule [`-If] states that a conditional choice is well-typed when the condition and
the branches are well-typed. Rules [`-Loop]/[`-Recur] state that a loop is well-typed when

ECOOP 2023

9:20 Sound, Regular Multiparty Sessions via Implicit Local Types

Ξ ` e : t Ξ, Υ ` P : L¶ L
pq !t==⇒ L¶

Ξ, Υ ` pq〈e〉.P : L [`-Out]
Ξ, x : t, Υ ` P : L¶ L

pq?t==⇒ L¶

Ξ, Υ ` pq(x:t).P : L [`-In]

Ξ, Υ ` Oi : L for every 1 ≤ i ≤ n [Oi = p-〈-〉.- for some 1 ≤ i ≤ n] for every L pq !t==⇒
Ξ, Υ `

∑
{O1, . . . , On} : L

[`-Sum1]

Ξ, Υ ` Ij : L for every 1 ≤ j ≤ m [Ij = pq(-:t).- for some 1 ≤ j ≤ m] for every L pq?t==⇒
Ξ, Υ `

∑
{I1, . . . , Im} : L

[`-Sum2]

L ⇓
Ξ, Υ ` 0 : L [`-End]

Ξ, Υ, recur : L ` P : L
Ξ, Υ ` loop P : L [`-Loop]

L1 ≈ L2
Ξ, Υ, recur : L1 ` recur : L2

[`-Recur]

Ξ ` e : Bool Ξ, Υ ` P1 : L Ξ, Υ ` P2 : L
Ξ, Υ ` if e P1 P2 : L [`-If]

[` Pr : Lr and wb(Lr)] for every r
` {Pr}r∈R : {Lr}r∈R

[`]

Figure 5 Well-typedness (“-” is a meta-variable to indicate that the object does not matter)

the body and the recursive calls are well-typed. Rule [`] states that a family of processes is
well-typed when every process is well-typed by a well-behaved local type.

Rule [`-Out] states that an output process is well-typed when the local type has an
analogous weak !-reduction such that the expression and the continuation are well-typed;
“analogous” means “same sender, same receiver, same data type”. Rule [`-In] states that
an input process is well-typed when the local type has an analogous weak ?-transition, and
the continuation is well-typed. Rule [`-Sum1] states that a selection of output processes
is well-typed when every subprocess is well-typed, and there is a possibly non-analogous
subprocess for every weak !-reduction of the local type. Rule [`-Sum2] states that a selection
of input processes is well-typed when every subprocess is well-typed, and there is an analogous
subprocess for every weak ?-reduction of the local type.

I Remark 35. As usual in the MPST literature, there is asymmetry between well-typedness of
selections of output processes and selections of input processes: if the local type specifies ≥1
sends, then the process may implement one of them (i.e., the programmer statically chooses
what/whereto the process sends); if it specifies ≥1 receives, then it must implement all of
them (i.e., the environment dynamically chooses what/wherefrom the process receives). J

I Example 36. Let G = aaa_bbb:{Nat.bbb_ccc:Nat.X, Bool.bbb_ccc:Bool.X}; the operational se-
mantics of this global type was previously visualised in Example 15.

Alice: Process bbb〈5〉.0, process bbb〈true〉.0, and process if cond() (bbb〈5〉.0) (bbb〈true〉.0) are
all well-typed by G�aaa, because rule [`-Sum1] requires only one send specified to be
implemented. Process bbb〈"foo"〉.0 is ill-typed, because rule [`-Sum1] requires every send
implemented to be specified. Process loop (bbb〈5〉.recur) is ill-typed by G�aaa as well,
because rule [`-Loop] adds recur : G�aaa to the process typing context at the root of the
derivation tree, but rule [`-Recur] requires recur : X at the leaf, and G�aaa 6≈ X.

Carol: Process bbb(x:Nat).0 and process if cond() (bbb(x:Nat).0) (bbb(x:Bool).0) are both ill-
typed by G�ccc, because rule [`-Sum2] requires every receive specified to be implemented.
Process

∑
{bbb(x:Nat).0,bbb(x:Bool).0} is well-typed by G�ccc. J

The asymmetry between the right-sided premises of rules [`-Sum1]/[`-Sum2] ensure
that if a family of well-typed local types can reduce, then the family of well-typed processes
can reduce, too, but possibly with a non-analogous communication. This is progress:

I Lemma 37. If G - L and ` P : L, then P ↓ or P −→. J

S. Jongmans and F. Ferreira 9:21

Complementary, the symmetry between the left-sided premises of rules [`-Sum1]/[`-Sum2]
(i.e., every subprocess of every selection needs to be well-typed) ensure that if a family of
well-typed processes can reduce, then the family of well-behaved local types can reduce, too,
and necessarily with an analogous communication. This is preservation:

I Lemma 38. If G - L and ` P : L, then (for every P ′, p, q, v):

If P ↓, then G ↓ and L ⇓.
If P pq�v−−−→ P ′, then G′ - L¶ and ` P ′ : L¶ and ` v : t and G pq�t−−−→ G′ and L pq�t==⇒ L¶,
for some t, G′,L¶. J

Progress and preservation entail operational refinement: every trace of the family of processes
(with concrete actions) is also a trace of the family of projections (with analogous abstract
actions); moreover, if the family of processes can terminate or deadlock, then also the family
of projections can. We formalise this concept directly in the following theorem.

I Theorem 39 (refinement). If ` P : {G�r}r∈R, and P
p1q1�v1−−−−−→ · · · pnqn�vn−−−−−→ P†, then:

{G�r}r∈R
p1q1�t1====⇒ · · · pnqn�tn=====⇒, and ` v1 : t1, and · · ·, and ` vn : tn, for some t1, . . . , tn.

If P† ↓, then L† ↓.
If P† 6 ↓ and P† 6−→, then L† 6 ↓ and L† 6−→. J

I Remark 40. Theorem 39 depends on premise ` P : {G�r}r∈R. To see that checking this
premise is decidable, observe that we need to check two sets of properties by rule [`]: (1)
well-typedness of the processes in P by the local types in {G�r}r∈R; (2) well-behavedness of
the local types in {G�r}r∈R. Regarding the first set, the typing rules for processes are defined
inductively on the structure of processes. Consequently, the number of applications is finite.
Furthermore, checking the premise of rule [`-In]/[`-Out]/[`-Sum1]/[`-Sum2] is decidable
because the reduction relation of every local type in {G�r}r∈R is finite (Remark 26). Thus,
checking the first set of properties is decidable. Regarding the second set, see Remark 26. J

3.7 Safety and Liveness
We proved operational equivalence for projection (Theorem 23) and operational refinement
for type checking (Theorem 39). Together, these main results entail type soundness.

I Corollary 41 (type soundness). If ` P : {G�r}r∈R and P p1q1�v1−−−−−→ · · · pnqn�vn−−−−−→ P†, then:

Safety: G p1q1�t1−−−−−→ · · · pnqn�tn−−−−−→, and ` v1 : t1, and · · ·, and ` vn : tn, for some t1, . . . , tn.
Liveness: P† ↓, or P† −→. J

All communication errors that can give rise to deadlock (Remark 33) are ruled out when
` P : {G�r}r∈R holds. Moreover, checking if ` P : {G�r}r∈R holds, is decidable (Remark 40).

4 Regular Grammars

In this section, we apply the new techniques for projection and type checking to regular
grammars of global types and processes for the first time. To achieve this, we need to revise
and extend the definitions of the grammars in §3, termination/reduction rules, and typing
rules. In contrast, the definitions of implicit local types, projection, and well-behavedness—as
well as the main result of operational equivalence (Theorem 23)—can stay exactly the same
as in §3: they were all formulated in general terms of termination and reduction, but not in
specific terms of the rules that define them. Thus, only the following changes are needed:

ECOOP 2023

9:22 Sound, Regular Multiparty Sessions via Implicit Local Types

X ↓
Gi ↓

G1 + G2 ↓

G1 ↓ G2 ↓
G1 · G2 ↓ G∗ ↓

(a) Termination

p_q :t pq�t−−−→ X

Gi
γ−→ G′

G1 + G2
γ−→ G′

G1
γ−→ G′1

G1 · G2
γ−→ G′1 · G2

G1 ↓ G2
γ−→ G′

G1 · G2
γ−→ G′

G
γ−→ G′

G∗
γ−→ G′ · G∗

(b) Reduction

Figure 6 Operational semantics of regular global types (standard for regular expressions; e.g., [4])

· · · (same as in Figure 4b)
∑
{O1, . . . , On}

π−→ P ′∑
{O1, . . . , On, I1, . . . , Im}

π−→ P ′

∑
{I1, . . . , Im}

π−→ P ′∑
{O1, . . . , On, I1, . . . , Im}

π−→ P ′

Figure 7 Operational semantics of regular processes – Reduction rules

I Definition 42 (revision of Definition 11). G ::= p_q :t
∣∣ G1 + G2

∣∣ G1 · G2
∣∣ G∗ ∣∣ X J

Global type p_q :t specifies a synchronous communication. Global types G1 + G2 and
G1 ·G2 specify the choice between, and the sequence of, G1 and G2. Global type G∗ specifies
the finite repetition of G. Global type X specifies the empty protocol.

I Definition 43 (revision of Definition 13 and Definition 14). See Figure 6. J

I Definition 44 (extension of Definition 28). P ::= · · ·
∣∣ ∑{O1, . . . , On, I1, . . . , Im} J

Process
∑
{O1, . . . , On, I1, . . . , Im} implements a non-deterministic selection of n output

processes and m input processes, simultaneously (i.e., it is a mixed input/output process).

I Definition 45 (extension of Definition 32). See Figure 7. J

I Definition 46 (extension of Definition 34). See Figure 8. J

While Theorem 23 of operational equivalence is directly applicable to the regular grammar
of global types in this section, Theorem 39 of operational refinement requires minor effort:
we need to prove a new, yet simple, inductive case for the new typing rule in Figure 8. Then:

I Corollary 47. Corollary 41 is applicable to the revisions and extensions in this section. J

Extending the regular grammar of processes with new process operators (including typing
rules) requires one to prove additional inductive cases. In contrast, extending the regular
grammar of global types with new global type operators (such that Propositions 16–17
continue to be valid) is completely free. That is, in this paper, projection (including well-
behavedness) and type checking are independent of the syntax of global types; they are
dependent only on the operational semantics. The formulations and proofs of our main
results are similarly independent. As a result of this independence, our regular grammar of
global types is actually “open ended”. As a first demonstration of this extensibility, we freely
add a few global type operators; they are intended to serve as higher-level abstractions to
make the specification of protocols easier. See also Example 8 and Example 9 in §2.2.

IDefinition 48 (extension of Definition 42). G ::= · · ·
∣∣ G1;G2

∣∣ G1‖G2
∣∣ G1onG2

∣∣ [G]γ1
γ2 J

Global type G1 ;G2 specifies the weak sequence of G1 and G2. It is similar to G1 ·G2, except
that independent communications inG1 andG2 can happen out-of-order. Communications
are independent when they have disjoint sets of participating roles. By using G∗ instead
of µX.G for loops (wlog for regularity), weak sequencing yields finite reduction relations.

S. Jongmans and F. Ferreira 9:23

· · · (same as in Figure 5)
Ξ, Υ `

∑
{O1, . . . , On} : L Ξ, Υ `

∑
{I1, . . . , Im} : L

Ξ, Υ `
∑
{O1, . . . , On, I1, . . . , Im} : L

Figure 8 Well-typedness

· · · (same as in Figure 6a)

G1 ↓ G2 ↓
G1 ; G2 ↓

G1 ↓ G2 ↓
G1 ‖ G2 ↓

G1 on G2 6−→
G1 on G2 ↓

[G]γ1
γ2 6−→

[G]γ1γ2 ↓

(a) Termination

· · · (same as in Figure 6b)

G1
γ−→ G′1

G1 ; G2
γ−→ G′1 · G2

r(G1) ∩ {p, q} = ∅ G2
pq�t−−−→ G′2

G1 ; G2
pq�t−−−→ G1 ; G′2

G1
γ−→ G′1

G1 ‖ G2
γ−→ G′1 ‖ G2

G2
γ−→ G′2

G1 ‖ G2
γ−→ G1 ‖ G′2

G1
γ−→ G′1 γ /∈ a(G2)

G1 on G2
γ−→ G′1 on G2

G2
γ−→ G′2 γ /∈ a(G1)

G1 on G2
γ−→ G1 on G′2

G1
γ−→ G′1 G2

γ−→ G′2

G1 on G2
γ−→ G′1 on G′2

G
γ1−→ G′

[G]γ1
γ2

γ−→ [G′]γ1
γ2

G
γ2−→ G′ G 6γ1−→

[G]γ1
γ2

γ−→ [G′]γ1
γ2

G
γ−→ G′ γ /∈ {γ1, γ2}

[G]γ1
γ2

γ−→ [G′]γ1
γ2

(b) Reduction. Let a(G) = {γ | G −→ · · · γ−→} and r(G) = {p, q | pq�t ∈ a(G)}.

Figure 9 Operational semantics of regular global types, extended

Global type G1 ‖ G2 specifies the interleaving of G1 and G2. We note that interleaving
was already present in the original paper on MPST [39], as well as in later papers
(e.g., [20, 30, 31, 51]). However, in these papers, G1 and G2 need to have disjoint roles
or disjoint channels, whereas in this paper, G1 and G2 need to have disjoint actions (as
a result of well-behavedness); this is a weaker requirement. Interleaving allows us, for
instance, to support the global types on rows “Example 13” and “MP workers” in Table 1.
Global typeG1onG2 specifies the join ofG1 andG2: every “unconstrained” communication
that occurs only in G1 or only in G2 is enabled in G1 on G2 if, and only if, it is enabled
in G1 or G2; every “constrained” communication that occurs both in G1 and in G2 is
enabled if, and only if, it is enabled in G1 and G2. See also Example 49, below.
Global type [G]γ1

γ2 specifies the prioritisation of high-priority γ1 over low-priority γ2 in G.

I Example 49. To exemplify join and prioritisation, letG1 = aaa_bbb·bbb_ccc andG2 = aaa_bbb·bbb_ddd
(data types omitted). Unconstrained are bbb_ccc (only in G1) and bbb_ddd (only in G2); constrained
is aaa_bbb (both in G1 and in G2). Thus, G1 on G2 is equivalent to aaa_bbb · (bbb_ccc ‖ bbb_ddd): after
the constrained communication, the unconstrained communications are interleaved. Thus,
[G1 onG2]bbbccc�

bbbddd� is equivalent to [aaa_bbb · (bbb_ccc‖bbb_ddd)]bbbccc�
bbbddd�, which is equivalent to aaa_bbb ·bbb_ccc ·bbb_ddd:

after aaa_bbb (no priority), bbb_ccc (high priority) must precede bbb_ddd (low priority). J

I Definition 50 (extension of Definition 43). See Figure 9. J

The termination rules for join and prioritisation state that they can terminate when
they cannot reduce. This formalises the design decision that operators that constrain
the behaviour of operands should be liberal: they should permit as much behaviour as
possible within the constraints they impose (avoid premature termination when reductions
are still possible); if less behaviour is required, more constraints can always be imposed.
The second reduction rule for weak sequencing states that G2 can start reducing before G1
has finished reducing, when the roles that participate in the reduction of G2 are disjoint
from those that participate in reductions of G1 (i.e., these reductions are independent).

ECOOP 2023

9:24 Sound, Regular Multiparty Sessions via Implicit Local Types

The first reduction rule (resp. second) for join states that it can γ-reduce when G1
(resp. G2) can, now, but G2 (resp. G1) cannot, ever (i.e., γ is unconstrained). The third
reduction rule states that it can γ-reduce when G1 and G2 can (i.e., γ is constrained).
The first reduction rule for prioritisation states that it can γ1-reduce (high priority) when
G can. The second reduction rule states that it can γ2-reduce (low priority) when it
cannot γ1-reduce. The third reduction rule states that it can γ-reduce when G can.

I Example 51. The following graphs visualise the operational semantics for Example 49:

aaabbb� bbbccc�

bbbddd�︸ ︷︷ ︸
G1

aaabbb�
bbbddd�︸ ︷︷ ︸

G2

aaabbb� bbbccc�

bbbddd�

bbbddd�

bbbccc�︸ ︷︷ ︸
G1 on G2

aaabbb� bbbccc�

bbbddd�

bbbddd�

bbbccc�︸ ︷︷ ︸
[G1 on G2]bbbccc�

bbbddd� J

We note that an evaluation of the usefulness of the added operators, as practical language
primitives, is not really part of the present scope; here, our only aim was to give an impression
of the future potential of the new techniques. Other possible global type primitives that
may deserve future consideration include delayed choice [5], roles-as-ports composition [47],
stateful global types (cf. stateful choreographies [28]), operators for higher-order protocols,
and syntax for general models of behaviour (as mentioned towards the end of §1.2).

5 Related Work

This paper contributes to a line of research to increase the expressiveness of MPST [39].
Regarding basic features, previous works have focussed on two limitations of directed choice
of the form

∑
{p_q :ti .Gi}1≤i≤n: (1) every branch must start with the same sender and

the same receiver as every other branch; (2) every “third role” that does not participate in
the first communication of every branch must have the same behaviour in every branch.

Merging: Honda et al. address limitation 2 by allowing “third roles” to have different
behaviour in different branches when they are timely informed of the chosen branch [18].
The approach relies on a function to syntactically merge local types; it is adopted by
many (e.g., [25,33,57]), but shown to be brittle [62]. In contrast, using our new projection
and type checking techniques, we address limitation 2 without merging (Remark 10).
Another approach that addresses limitation 2 without merging was developed by Scalas–
Yoshida [62]. It works in three steps: first, every local type is interpreted as an automaton
that specifies one role alone (similar to our operational semantics of implicit local types);
next, the automata are composed into a product automaton—exponentially sized in the
worse case—that specifies all roles together; last, the product automaton is checked for
satisfaction of a special temporal logic formula ϕ, which entails type soundness. However,
this method is non-compositional: the premise of the typing rule for families of processes
(which depends on satisfaction of ϕ) cannot be checked separately for every role. Such
non-compositional approaches to MPST have already been shown to have scalability
issues [44]. Conversely, our typing rule for families is fully compositional (Remark 27).

Located/mixed choice: Several teams of authors address limitation 1 by allowing every
branch to start with a different receiver than every other branch. In earlier works that
support such located choice of the form

∑
{p_qi :ti .Gi}1≤i≤n, communication races in the

continuations are forbidden [9,20,31,42,51]; in later works, they are allowed [21–23,54,65].
We support them, too. However, the authors of these papers prove theorems for a closed
set of global type operators, including

∑
{p_qi :ti .Gi}1≤i≤n. Instead, we prove theorems

for an open set of global type operators, as demonstrated in §2.2 and §4.

S. Jongmans and F. Ferreira 9:25

Verification of mixed input/output processes using session typing is a long-standing open
problem. Progress was made by Casal et al. [19] (binary), Kouzapas–Yoshida (multiparty,
but unpublished so far [69, ref. 24]), and Jongmans–Yoshida [44] (multiparty, but no type
checking). We can verify multiparty non-deterministic mixed input/output processes for
the first time (but not yet deterministic mixed choice), as demonstrated in §2.2.

The usage of the operational semantics of local types was first studied in the context of
multiparty compatibility [32] and extensions [8, 51,52]. The idea is to interpret local types
as communicating finite state machines (CFSM) [11]. Multiparty compatibility, then, is a
predicate on the joint state space of the CFSMs to ensure safety and liveness. As such, a key
difference between multiparty compatibility (MC) and this paper’s well-behavedness (WB) is
that MC is non-compositional (i.e., the joint state space must be computed, so MC cannot
be checked separately for every role), whereas WB is fully compositional (Remark 27). A
rudimentary version of WB was studied by Jongmans–Yoshida [44], but it is less expressive
(e.g., they do not support Example 15) and limited to projection (no type checking). A
version of WB for global types was studied by Gheri et al. [34], in the context of choreography
automata [6], but it is limit to projection (no type checking).

There are several non-traditional techniques for projection in the MPST literature. Lopez
et al. [53] capture projection in a decidable type equivalence. Castellani et al. [22] and
Hamers et al. [37] do not use projection at all, but type-check families of processes against
global types (non-compositional). Last, the concept of implicit local types in this paper
generalises an idea by Van Glabbeek et al. [65], who define merging as a local type operator.

6 Conclusion

We introduced two new techniques to significantly improve the expressiveness of the MPST
method: projection is based on implicit local types instead of explicit; type checking is
based on the operational semantics of implicit local types instead of on the syntax. Classes
of protocols that can now be specified/implemented/verified for the first time using the
MPST method include: recursive protocols in which different roles participate in different
branches (Example 2, Example 3); protocols in which a receiver chooses the sender of the
first communication (Example 6, Example 8, Example 9); protocols in which multiple roles
synchronously choose both the sender and the receiver of a next communication (Example 5,
Example 6), implemented as mixed input/output processes. We presented the theory of
the new techniques, as well as their future potential, and we demonstrated their present
capabilities to effectively support regular expressions as global types (not possible before).

As evidence that the new techniques are implementable, we implemented them; this
implementation is available as a companion artefact (published in DARTS).

We aim to push the new techniques of this paper forward towards a new branch of research
in MPST, centred around operational semantics of local types in typing rules; incidentally, it
could be a natural path to explore for behavioural typing in general, too. In particular, we
are keen to apply the new techniques for projection and type checking also to asynchronous
communication and parametrised protocols/indexed roles [25, 33]. In both cases, the main
challenge is how to ensure decidability (keep the reduction relations finite).

References
1 Luca Aceto, Anna Ingólfsdóttir, and Jirí Srba. The algorithmics of bisimilarity. In Advanced

Topics in Bisimulation and Coinduction, volume 52 of Cambridge tracts in theoretical computer
science, pages 100–172. Cambridge University Press, 2012.

ECOOP 2023

9:26 Sound, Regular Multiparty Sessions via Implicit Local Types

2 Bernardo Almeida, Andreia Mordido, Peter Thiemann, and Vasco T. Vasconcelos. Polymorphic
lambda calculus with context-free session types. Inf. Comput., 289(Part):104948, 2022.

3 Bernardo Almeida, Andreia Mordido, and Vasco T. Vasconcelos. Deciding the bisimilarity
of context-free session types. In TACAS (2), volume 12079 of Lecture Notes in Computer
Science, pages 39–56. Springer, 2020.

4 Jos C. M. Baeten, Flavio Corradini, and Clemens Grabmayer. A characterization of regular
expressions under bisimulation. J. ACM, 54(2):6, 2007.

5 Jos C. M. Baeten and Sjouke Mauw. Delayed choice: an operator for joining message sequence
charts. In FORTE, volume 6 of IFIP Conference Proceedings, pages 340–354. Chapman &
Hall, 1994.

6 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In COORDIN-
ATION, volume 12134 of Lecture Notes in Computer Science, pages 86–106. Springer, 2020.

7 J. F. A. K. Van Benthem. Hintikka on analyticity. Journal of Philosophical Logic, 3(4):419–431,
1974. doi:10.1007/bf00257484.

8 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In CONCUR,
volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

9 Laura Bocchi, Hernán C. Melgratti, and Emilio Tuosto. Resolving non-determinism in
choreographies. In ESOP, volume 8410 of Lecture Notes in Computer Science, pages 493–512.
Springer, 2014.

10 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
CONCUR, volume 8704 of Lecture Notes in Computer Science, pages 419–434. Springer, 2014.

11 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

12 Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography conform-
ance and contract compliance. In SC@ETAPS, volume 4829 of Lecture Notes in Computer
Science, pages 34–50. Springer, 2007.

13 Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreography conformance
in the presence of message queues. In WS-FM, volume 5387 of Lecture Notes in Computer
Science, pages 37–54. Springer, 2008.

14 Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Choreography and orchestration conformance for system design. In COORDINATION, volume
4038 of Lecture Notes in Computer Science, pages 63–81. Springer, 2006.

15 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing access control
and secure information flow in sessions. Inf. Comput., 238:68–105, 2014.

16 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information flow safety
in multiparty sessions. Mathematical Structures in Computer Science, 26(8):1352–1394, 2016.

17 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
types for access and information flow control. In CONCUR, volume 6269 of Lecture Notes in
Computer Science, pages 237–252. Springer, 2010.

18 Marco Carbone, Nobuko Yoshida, and Kohei Honda. Asynchronous session types: Exceptions
and multiparty interactions. In SFM, volume 5569 of Lecture Notes in Computer Science,
pages 187–212. Springer, 2009.

19 Filipe Casal, Andreia Mordido, and Vasco T. Vasconcelos. Mixed sessions. Theor. Comput.
Sci., 897:23–48, 2022.

20 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Logical Methods in Computer Science, 8(1), 2012.

21 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Reversible sessions
with flexible choices. Acta Informatica, 56(7-8):553–583, 2019.

22 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Asynchronous sessions
with input races. CoRR, abs/2203.12876, 2022.

https://doi.org/10.1007/bf00257484

S. Jongmans and F. Ferreira 9:27

23 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global
types with internal delegation. Theor. Comput. Sci., 807:128–153, 2020.

24 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Asp. Comput., 28(4):669–696,
2016.

25 David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. Distrib-
uted programming using role-parametric session types in go: statically-typed endpoint apis
for dynamically-instantiated communication structures. PACMPL, 3(POPL):29:1–29:30, 2019.

26 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. API generation
for multiparty session types, revisited and revised using scala 3. In ECOOP, volume 222 of
LIPIcs, pages 27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

27 Alex Coto, Roberto Guanciale, and Emilio Tuosto. An abstract framework for choreographic
testing. J. Log. Algebraic Methods Program., 123:100712, 2021.

28 Luís Cruz-Filipe, Kim S. Larsen, and Fabrizio Montesi. The paths to choreography extraction.
In FoSSaCS, volume 10203 of Lecture Notes in Computer Science, pages 424–440, 2017.

29 Ugo de’Liguoro, Hernán C. Melgratti, and Emilio Tuosto. Towards refinable choreographies.
J. Log. Algebraic Methods Program., 127:100776, 2022.

30 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages
435–446. ACM, 2011.

31 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2012.

32 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP (2), volume 7966
of Lecture Notes in Computer Science, pages 174–186. Springer, 2013.

33 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012.

34 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-by-
contract for flexible multiparty session protocols. In ECOOP, volume 222 of LIPIcs, pages
8:1–8:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

35 Roberto Guanciale and Emilio Tuosto. Realisability of pomsets. J. Log. Algebraic Methods
Program., 108:69–89, 2019.

36 Ruben Hamers, Erik Horlings, and Sung-Shik Jongmans. The discourje project: run-time
verification of communication protocols in clojure. Int. J. Softw. Tools Technol. Transf.,
24(5):757–782, 2022.

37 Ruben Hamers and Sung-Shik Jongmans. Discourje: Runtime verification of communication
protocols in clojure. In TACAS (1), volume 12078 of Lecture Notes in Computer Science,
pages 266–284. Springer, 2020.

38 Jaakko Hintikka. Logic, Language-Games and Information: Kantian Themes in the Philosophy
of Logic. Oxford, England: Oxford, Clarendon Press, 1973.

39 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

40 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016.

41 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE, volume 9633 of Lecture Notes in Computer Science, pages 401–418. Springer,
2016.

42 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In FASE, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer, 2017.

43 Sung-Shik Jongmans and Francisco Ferreira. Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types (Technical Report). Technical Report OUNL-
CS-2023-01, Open University of the Netherlands, 2023.

ECOOP 2023

9:28 Sound, Regular Multiparty Sessions via Implicit Local Types

44 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In ESOP, volume 12075 of Lecture Notes in Computer
Science, pages 251–279. Springer, 2020.

45 Alex C. Keizer, Henning Basold, and Jorge A. Pérez. Session coalgebras: A coalgebraic view
on regular and context-free session types. ACM Trans. Program. Lang. Syst., 44(3):18:1–18:45,
2022.

46 Jonathan King, Nicholas Ng, and Nobuko Yoshida. Multiparty session type-safe web de-
velopment with static linearity. In PLACES@ETAPS, volume 291 of EPTCS, pages 35–46,
2019.

47 Christian Koehler and Dave Clarke. Decomposing port automata. In SAC, pages 1369–1373.
ACM, 2009.

48 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing multiparty
session types in rust. In COORDINATION, volume 12134 of Lecture Notes in Computer
Science, pages 127–136. Springer, 2020.

49 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay safe under panic: Affine
rust programming with multiparty session types. In ECOOP, volume 222 of LIPIcs, pages
4:1–4:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

50 Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the gap
between interaction- and process-oriented choreographies. In SEFM, pages 323–332. IEEE
Computer Society, 2008.

51 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL, pages 221–232. ACM, 2015.

52 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
97–117. Springer, 2019.

53 Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos,
Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Protocol-based verification of message-
passing parallel programs. In OOPSLA, pages 280–298. ACM, 2015.

54 Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising
projection in asynchronous multiparty session types. In CONCUR, volume 203 of LIPIcs,
pages 35:1–35:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

55 Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

56 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in typescript with routed multiparty session types. In CC, pages 94–106. ACM,
2021.

57 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017.

58 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In CC,
pages 128–138. ACM, 2018.

59 Nicholas Ng and Nobuko Yoshida. Pabble: parameterised scribble. Service Oriented Computing
and Applications, 9(3-4):269–284, 2015.

60 Luca Padovani. Context-free session type inference. ACM Trans. Program. Lang. Syst.,
41(2):9:1–9:37, 2019.

61 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In ECOOP, volume 74 of LIPIcs, pages
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

62 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019.

63 Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In ICFP, pages 462–475.
ACM, 2016.

S. Jongmans and F. Ferreira 9:29

64 Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. J. Log.
Algebraic Methods Program., 95:17–40, 2018.

65 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming just enough fairness to make
session types complete for lock-freedom. In LICS, pages 1–13. IEEE, 2021.

66 Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In
CONCUR, volume 458 of Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

67 Rob J. van Glabbeek. The linear time - branching time spectrum II. In CONCUR, volume
715 of Lecture Notes in Computer Science, pages 66–81. Springer, 1993.

68 Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation
semantics. J. ACM, 43(3):555–600, 1996.

69 Vasco T. Vasconcelos, Filipe Casal, Bernardo Almeida, and Andreia Mordido. Mixed sessions.
In ESOP, volume 12075 of Lecture Notes in Computer Science, pages 715–742. Springer, 2020.

70 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In FCT, volume 12867 of Lecture
Notes in Computer Science, pages 18–35. Springer, 2021.

71 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically verified refinements for multiparty protocols. Proc. ACM Program. Lang.,
4(OOPSLA):148:1–148:30, 2020.

ECOOP 2023

	1 Introduction
	1.1 Open Question: Regular Expressions as Global/Local Types
	1.2 Contributions of This Paper

	2 Overview of the Techniques
	2.1 Sub-Regular Grammars
	2.2 Regular Grammars

	3 Sub-Regular Grammars
	3.1 Global Types – Syntax
	3.2 Global Types – Operational Semantics
	3.3 Main Result 1: Well-Behavedness Implies Operational Equivalence
	3.4 Processes – Syntax
	3.5 Processes – Operational Semantics
	3.6 Main Result 2: Well-Typedness Implies Operational Refinement
	3.7 Safety and Liveness

	4 Regular Grammars
	5 Related Work
	6 Conclusion

