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Abstract. A scheduler is an algorithm that assigns at any time a set
of processes to a set of processors. Processes usually interact with each
other, which introduces dependencies amongst them. Typically, such de-
pendencies induce extra delays that the scheduler needs to avoid. Specific
types of applications, like streaming applications, synthesize a scheduler
from a formal model that is aware of these interactions. However, such
interaction-specific information is not available for general types of ap-
plications. In this paper, we propose an interaction aware scheduling
framework for generic concurrent applications. We formalize the amount
of work performed by an application as constraints. We use these con-
straints to generate a graph, and view scheduler synthesis as solving a
game on this graph that is played between the scheduler and the applica-
tion. We illustrate that our framework is expressive enough to subsume
an established scheduling framework for streaming programs.

1 Introduction

A scheduler of a concurrent application is an algorithm that assigns at any time
processes of the application to a set of processors to execute them. The pro-
cesses in a concurrent application interact with each other, which introduces
dependencies amongst them. For example, a consumer process cannot execute
if it requires data not yet provided by a producer process. Typically, such de-
pendencies induce extra delays that the scheduler needs to avoid. For specific
types of applications, like streaming applications [18], formal models exist that
are aware of the interactions among their processes. Such models are then used
to synthesize schedulers that optimize the execution of their applications with
respect to a scheduling goal, such as latency or power consumption [4, 15]. For
general types of applications, like web servers [10], no a priori detailed infor-
mation about the interactions among their constituent processes is available to
the scheduler. In such cases, a general-purpose round-robin scheduler is typically
used to execute the application on the available processors. However, we cannot
expect such schedulers to optimize our scheduling goals, because they cannot
anticipate the dependencies among application processes.

In this paper, we propose an interaction-aware scheduling framework that en-
ables scheduler synthesis for generic concurrent applications, by explicitly mod-
elling interactions among processes. In particular, this framework consists of
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two elements: a novel formal model of concurrent applications and a scheduler
synthesis approach built on top of this formal model.

We base our formal model of concurrent applications on constraint automata

[3], a general model of concurrency developed by Baier et al. (originally as a
formal semantics for the coordination language Reo [2]). Basically, the idea is
to model a concurrent application as a set of constraint automata, one for ev-
ery process in the application. In this approach, every constraint automaton
models the behaviour of a process at the level of its interactions with its envi-
ronment (i.e., other processes). Using a special composition operator, we obtain
a interaction-aware model for the entire concurrent application.

The existing theory of constraint automata focuses on processes and their
interactions; it does not yet facilitate modelling the amount of work that pro-
cesses need to carry out. However, such information is essential for scheduling.
In this paper, we therefore extend transition labels in constraint automata with
a declarative constraint that describes the work that needs to be done as part
of a transition. These job constraints essentially generalize simple weights as
in weighted automata [11], primarily to support true concurrency in composi-
tion. We call the resulting extension of constraint automata work automata, and
we extend the composition operator on constraint automata to work automata
accordingly. Work automata, then, constitute a formal model of concurrent ap-
plications in which both interaction among processes and work inside processes
can be expressed, in a compositional and general manner.

Next, we use work automata in our interaction-aware scheduler synthesis.
Given a formal model of a concurrent application as a set of work automata, our
interaction-aware scheduler synthesis approach consists of two steps. In the first
step, we use our composition operator on work automata to construct a work
automaton for the entire concurrent application. The resulting work automaton
models exactly the work of each process and the dependencies between the work.
In the second step, we model the scheduler synthesis problem as a token game on
a graph played between the scheduler and the application. The scheduler assigns
the processes of the application to a heterogeneous set of processors, and the
application non-deterministically selects a possible execution of the application.
We apply results about the existence and quality of optimal strategies in mean

payo↵ games [7, 12] to find schedules that minimize the use of context-switches.
Finally, we illustrate that our framework is expressive enough to subsume an
established scheduling framework for streaming applications.

The structure of the paper is as follows: In Section 2, we introduce job con-
straints and define work automata. In Section 3, we define the graph on which a
scheduling game is played. In Section 4, we apply our scheduling framework to
streaming applications. In Section 5, we conclude and discuss future work.

2 Concurrent applications

As a starting point, we use a system of communicating automata to model in-
teraction among processes in a concurrent application. To define the scheduling



Scheduling Games for Concurrent Systems 3

problem for this system of automata, we annotate each transition with an ex-
pression that models the workload of that transition. In Section 2.1, we recall the
definition of constraint automata. In Section 2.2, we introduce job constraints,
which model the work of the processes in a concurrent application. In Section 2.3,
we define work automata by adding job constraints to constraint automata. In
Section 2.4, we informally discuss the semantics of work automata. In Section 2.5,
we extend constraint automata composition to work automata.

2.1 Preliminaries on constraint automata

Baier et al. proposed constraint automata to model interaction amongst pro-
cesses in a concurrent application [3]. A constraint automaton is a tuple A =
(Q,P,!), where Q is a set of states, P is a set of ports, called the interface,
and ! ✓ Q⇥ 2P ⇥Q is a transition relation. Informally, A is a labeled transi-
tion system with labels, called synchronization constraints, consisting of subsets
N ✓ P. A synchronization constraint N ✓ P describes the interaction of A with
its environment: ports in N synchronize, while ports outside of N block. Note
that ; ✓ P models an internal action of the automaton. Originally, in addition
to a synchronization constraint, every transition in a constraint automaton car-
ries also a data constraint. Data constraints are logical assertions that specify
which particular data items may be observed on the ports that participate in
a transition. Because data constraints do not matter in what follows—they ad-
dress an orthogonal concern—we omit them from the definition for simplicity
(technically, thus, we consider port automata [16]); the work presented in this
paper straightforwardly extends to constraint automata with data constraints.

The constraint automaton of an entire application can be obtained by par-
allel composition of the constraint automata of its processes. For i 2 {0, 1}, let
A

i

= (Q
i

,P
i

,!
i

) be a constraint automaton. The composition A0 on A1 is de-
fined by (Q0 ⇥ Q1,P0 [ P1,!), where ! is the smallest relation that satisfies
the following rule: if i 2 {0, 1}, ⌧

i

= (q
i

, N

i

, q

0
i

) 2 !
i

, ⌧1�i

= (q1�i

, N1�i

, q

0
1�i

) 2
!1�i

[ {(q, ;, q) | q 2 Q1�i

} and N0 \ P1 = N1 \ P0, then ⌧0 | ⌧1 =
((q0, q1), N0 [ N1, (q

0
0, q

0
1)) 2 ! (cf., Definition 3.2 in [3]). In other words, a

transition ⌧ = ((q0, q1), N, (q00, q
0
1)) 2 ! of the composition is possible if either

(1) both restrictions ⌧ |P0 = (q0, N \P0, q
0
0) and ⌧ |P1 = (q1, N \P1, q

0
1) are tran-

sitions in A0 and A1, or (2) for some i 2 {0, 1}, the restriction ⌧ |P
i

is a transition
in A

i

that is independent of A1�i

, i.e., N \ P1�i

= ;.

2.2 Job constraints

A system of constraint automata describes only interaction, while the workload
of each process remains unspecified. Therefore, we extend transition labels in
constraint automata with a work expression that models the amount of work
that needs to be done before a transitions fires.

In the simplest of cases, a transition in a constraint automaton models an
atomic piece of work, belonging to a single process. In that case, we can straight-
forwardly model this amount of work as a natural number n 2 N0. However,
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through (parallel) composition, a transition in a constraint automaton may also
model the synchronous firing of multiple transitions (originating from di↵erent
constraint automata for di↵erent processes). In that case, a single natural number
fails to express that the work involved by each of these multiple transitions may
actually be done in parallel. For instance, for i 2 {0, 1}, let A

i

= (Q
i

,P
i

,!
i

) be
a work automaton and ⌧

i

= (q
i

, N

i

, q

0
i

) 2 !
i

a transition that requires n
i

2 N0

units of work. Suppose that ⌧0 and ⌧1 synchronize, i.e., N0 \ P1 = N1 \ P0.
Intuitively, ⌧0 | ⌧1 then requires n0+n1 units of work, which may seem to define
the composition of work. However, this composition loses the information that
A0 and A1 may run in parallel and that the n0 and n1 units of work are indepen-
dent of each other. To avoid this loss, we keep the values n0 and n1 separate by
associating ⌧

i

with a job x

i

that requires n
i

units of work. We represent the work
of ⌧

i

as the job constraint x

i

= n

i

, and the work of ⌧0 | ⌧1 as x0 = n0 ^ x1 = n1.
Although job constraints with equalities (as introduced above) enable us

to express parallelism of work between synchronizing transitions, they do not
enable us to express parallelism of work between independent transitions (i.e.,
transitions that do not share any ports). The issue here is that if a transition
⌧0 in automaton A0 fires before an independent transition ⌧1 in automaton A1

fires, A1 is free to already perform (some) work while ⌧0 fires, in anticipation

of later firing ⌧1. To model this, we should associate ⌧0 with a job constraint
that specifies that the work associated with ⌧1 can be performed partially. We do
this by allowing inequalities in job constraints. For instance, if the job constraint
of ⌧0 is x0 = n0, while the job constraint of ⌧1 is x1 = n1, we define the job
constraint of ⌧0 | ✏ (i.e., the incarnation of ⌧0 in the composition of A0 and A1,
where ✏ denotes an internal action of A1) as x0 = n0 ^ x1  n1.

We define the set of job constraints w over a set of jobs J by the grammar

w ::= > | x = n | x  n | w0 ^ w1, (1)

with x 2 J and n 2 N0. The need for inequalities in w, precludes using weights
on transitions in weighted automata [11] to represent work.

For notational convenience, we introduce the following terminology regarding
a job constraint w over a set of jobs J . Let F,G ✓ J and n

x

,m

y

2 N0, for all
x 2 F and y 2 G, such that w is equivalent to

V
x2F

x = n

x

^V
y2G

y  m

y

. We
call w saturated, whenever F [G = J . We call w satisfiable, whenever n

x

 m

x

,
for all x 2 F \G. If w is satisfiable and x 2 J , then we define the available work

w

x

2 N0 [ {1} for job x by w

x

= n

x

, if x 2 F , w
x

= m

x

, if x 2 G \ F , and
w

x

= 1 otherwise. Finally, we define the set of required jobs ⇢

w

✓ J by ⇢

w

= F .

2.3 Work automata

We now extend the transition labels of constraint automata from Section 2.1
with the job constraints from Section 2.2.

Definition 1. A work automaton is a tuple (Q,P,J ,!) that consists of a set

of states Q, a set of ports P, a set of jobs J , and a transition relation ! ✓
Q⇥ 2P ⇥⌦J ⇥Q, where ⌦J is the set of all satisfiable job constraints over J .
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;, x = 2

{a}, x  2
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{a}, x  2

(b) Bu↵ered producer A
prd

.

0 1

{a}, y = 1 ^ z = 0

;, y = 0 ^ z = 3

(c) Consumer A
con

.

Fig. 1. Producer-consumer application (a), and its corresponding system of work au-
tomata (b) and (c) with {a} as their interface {x} and {y, z} as their respective job
sets.

Example 1. One of the simplest non-trivial examples of concurrent systems is
the producer-consumer system, shown in Figure 1(a). The producer generates
data and puts them into its bu↵er. The consumer takes these data from the
bu↵er and processes them. We assume that the bu↵er has capacity 2. We split
the system into a bu↵ered producer and a consumer. Figures 1(b) and 1(c) show
their respective work automata. States 0, 1 and 2 in Figure 1(b) indicate the
amount of data in the bu↵er. In state 0 or 1, the producer can produce a new
datum by finishing 2 units of work of job x. In state 1 or 2, the consumer can
take a datum from the bu↵er by synchronizing on port a, which requires no work
on job x. In state 0 in Figure 1(c), the consumer waits for a datum d at port a.
When d arrives, the consumer takes it from the bu↵er, requiring 1 unit of work
on job y. In state 1, the consumer processes datum d, requiring 3 units on job z.

2.4 Job execution

Let A = (Q,P,J ,!) be some fixed work automaton. In this section, we infor-
mally introduce the semantics of A. The jobs in a work automaton are executed
by a parallel machine M, which consists of a heterogeneous set of processors
and a map that represents the execution speed of jobs on processors.

Definition 2. A parallel machine is a tuple (M,J , v), where M is a set of

processors, J is a set of jobs and v : J ⇥ M ! N0 is a map that models the

speeds of jobs on processors.

It is the task of a scheduler to assign jobs from a set J to processors in a
parallel machine (M,J , v) over J . We model this assignment of jobs to proces-
sors by an injective partial map s : M * J that represents the scheduled jobs,
i.e., s(i) = s(j) implies i = j, for all i, j 2 M . We write S(M,J ) for the set of
all injective partial maps s : M * J .

We represent the speeds of jobs in J subject to the scheduled jobs s 2
S(M,J ) by the map v

s

: J ! N0, given by v

s

(x) = v(x, s�1(x)) if x 2 im(s)
and v

s

(x) = 0 otherwise. Here, im(s) = {s(m) 2 J | m 2 M} is the image of s.
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We represent the current progress of jobs by a map p : J ! Q�0, where Q�0

is the set of non-negative rational numbers. After executing the scheduled jobs
s 2 S(M,J ) for t 2 Q�0 time, the progress of jobs in J equals p

0 = p + v

s

· t,
where + is pointwise addition and · is multiplication by a scalar, i.e., p0(x) =
p(x) + v(x, s�1(x)) · t if x 2 im(s) and p

0(x) = p(x) otherwise.

Example 2. Let k > 0 be a positive integer and J a set of jobs. Then, M
k

=
({1, . . . , k},J , v), with v(x, i) = 1 for all x 2 J and 1  i  k, models a parallel
machine that consists of k identical processors. Any two processors are identical
and interchangeable. Therefore, the scheduled jobs s 2 S(M,J ) depend solely
on the image im(s). If s, s0 2 S({1, . . . , k},J ) and im(s) = im(s0), then v

s

= v

s

0 .
Hence, we represent scheduled jobs as a subset J ✓ J .

Let ⌧ = (q,N,w, q

0) be a transition in A and p : J ! Q�0 be the current
progress of jobs. Recall the notation regarding job constraints from Section 2.2.
We call a job x finished whenever its progress p(x) equals w

x

2 N0 [ {1}.
We demand that all required jobs x 2 ⇢

w

finish their available work w

x

. The
automaton A may take a transition ⌧ if the progress of jobs p satisfies the job
constraint w (notation: p |= w), i.e., p(x)  w

x

for all jobs x 2 J and p(x) = w

x

for required jobs x 2 ⇢

w

. Note that for ⇢

w

= ;, transition ⌧ requires no work,
and ⌧ then represents for example the arrival of input data.

Suppose that p |= w and A takes transition ⌧ . Then, the current state of A
becomes q0 and the progress of required jobs resets to zero. Formally, the progress
becomes p0 = ⇢

w

(p), where ⇢
w

: NJ
0 ! N

J
0 is the reset operation associated with

⇢

w

defined as ⇢
w

(p)(x) = p(x) if x /2 ⇢

w

and ⇢

w

(p)(x) = 0 otherwise.

2.5 Composition

In Section 2.3, we extended constraint automata to work automata. We now ex-
tend the composition of constraint automata from Section 2.1 to work automata.

Let A0 and A1 be two work automata. We want our composition of work au-
tomata to conservatively extend the composition of constraint automata. This
means that the state space, interface and transition relation (up to job con-
straints) of the composition are already determined. Since a job x in A

i

, for
i 2 {0, 1}, is merely a name for a piece of work inside A

i

, we may rename x to
(x, i). This allows us to define the set of jobs of the composition as the disjoint
union J0 +J1 = J0 ⇥ {0}[J1 ⇥ {1}. For i 2 {0, 1}, let ⌧

i

= (q
i

, N

i

, w

i

, q

0
i

) be a
transition in A

i

. If N0 \P1 = N1 \P0, then ⌧0 and ⌧1 synchronize and give rise
to a transition ⌧0 | ⌧1 = ((q0, q1), N0 [N1, w0 ^ w1, (q

0
0, q

0
1)). If ⌧0 and ⌧1 are in-

dependent, i.e., N0\P1 = N1\P0 = ;, then ⌧0 and the relaxation (q1, ;, w
1 , q1)

of ⌧1, give rise to a transition ⌧0 | ⌧1 = ((q0, q1), N0, w0 ^ w


1 , (q

0
0, q1)) in the

composition, where w


1 is the job constraint derived from w1 by substituting

every = with . This substitution is well-defined, because, according to gram-
mar (1), jobs exclusively appear on the left hand side of an equality. Transition

⌧0 | ⌧1 represents that ⌧0 is taken, while jobs in ⌧1 makes arbitrary progress

bounded by w1. We define the a lift ⌧


0 | ⌧1 of ⌧1 analogously. Finally, if ⌧0



Scheduling Games for Concurrent Systems 7

00 10 20

01 11 21

;, x = 2 ^ y = 0 ^ z = 0 ;, x = 2 ^ y = 0 ^ z = 0

;, x = 2 ^ y = 0 ^ z  3

;, x = 2 ^ y = 0 ^ z = 0

;, x = 2 ^ y = 0 ^ z  3

;, x = 2 ^ y = 0 ^ z = 0

;,
x


2
^
y
=

0
^
z
=

3

;,
x
=

0
^
y
=

0
^
z
=

3

;,
x


2
^
y
=

0
^
z
=

3

;,
x
=

0
^
y
=

0
^
z
=

3

;,
x
=

0
^
y
=

0
^
z
=

3

{a}
,

y

=
1 ^

z

=
0

{a}
,

y

=
1 ^

z

=
0

;, x
=
2 ^

y

=
0 ^

z

=
3

;, x
=
2 ^

y

=
0 ^

z

=
3

Fig. 2. Composition A
prd

on A
con

of the work automata in Figures 1(b) and 1(c).

is independent of A1 (i.e., N0 \ P1 = ;), then ⌧0 gives rise to a transition
((q0, q1), N0, w0 ^ V

x2J1
x = 0, (q00, q1)) in the composition, where ⌧0 executes

independently of A1 and all jobs in A1 block. This blocking means that A1 needs
to wait, unless a transition ⌧1 in A1 induces a synchronization ⌧0 | ⌧1 or ⌧0 | ⌧1 .

Definition 3. For i 2 {0, 1}, let A
i

= (Q
i

,P
i

,J
i

,!
i

) be a work automaton. We

define the composition A0 on A1 of A0 and A1 as the work automaton (Q0 ⇥
Q1,P0[P1,J0+J1,!), where ! is the smallest relation satisfying the following

rule: if i 2 {0, 1}, ⌧
i

= (q
i

, N

i

, w

i

, q

0
i

) 2 !
i

, ⌧1�i

= (q1�i

, N1�i

, w1�i

, q

0
1�i

) 2
!1�i

[ {(q, ;,V
x2J1�i

x = 0, q) | q 2 Q1�i

} and I := N0 \ P1 = N1 \ P0, then

1. ⌧0 | ⌧1 = ((q0, q1), N0 [N1, w0 ^ w1, (q
0
0, q

0
1)) 2 !; and

2. I = ; implies ⌧0 | ⌧1 2 ! and ⌧


0 | ⌧1 2 !, where ⌧


i

= (q
i

, ;, w
i

, q

i

).

Example 3. Figure 2 shows the composition of the work automata from Figures
1(b) and 1(c). A state ij indicates that the bu↵ered producer is in state i and the
consumer is in state j. In state 00, the consumer cannot retrieve a datum from
the bu↵er. Hence, the consumer is not allowed to work on job y. The transition
from 01 to 11 with job constraint x = 2^y = 0^z = 3 is redundant, because the
other transition from 01 to 11 has a weaker job constraint x = 2^ y = 0^ z  3.

3 Scheduling games

A work automaton can make non-deterministic internal choices, beyond the con-
trol of the scheduler. Therefore, we can view the scheduler synthesis problem over
a work automaton and a parallel machine as a game that is played between the
scheduler and the application modelled by a work automaton. The scheduler
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assigns jobs to processors and the application executes the running jobs and,
whenever possible, makes a perhaps non-deterministically selected transition.
We represent this game as a token game played on a graph that we derive from
a work automaton and a parallel machine. Every play of this game (i.e., a path
in this graph) corresponds to a run of the work automaton. Hence, a strategy in
this game corresponds to a schedule of the corresponding concurrent application.
In Section 3.1, we recall some basic terminology and known results for games
played on graphs. In Section 3.2, we interpret the execution of jobs in a work
automaton as a game played on a graph. In Section 3.3, we assign an execution
time to every move in a scheduling game. In Section 3.4, we introduce a class of
scheduling objectives for both terminating and non-terminating applications. In
Section 3.5, we find schedules that minimize the number of context-switches.

3.1 Preliminaries on games on graphs

We view scheduler synthesis as a problem of finding optimal strategies in a game
played on a graph. Therefore, we recall the basic definitions about these games.

A game arena is a finite directed bipartite leafless graph A. More formally,
A is a triple (V,E,') that consists of a finite set of vertices V , a set of edges
! ✓ V ⇥ V such that for all a 2 V there exists a b 2 V with (a, b) 2 E, and a
2-colouring ' : V ! {0, 1}, i.e., (a, b) 2 E implies '(a) 6= '(b), for all a, b 2 V .
Vertices and edges in this graph are called positions andmoves. For every a0 2 V ,
consider the following token game on A between Player 0 and Player 1. Let a0
be the initial position of the token. Construct an infinite sequence ⇡ = (a

i

)1
i=0

as follows: for all i � 0, Player '(a
i

) selects a successor position a

i+1 2 V , with
(a

i

, a

i+1) 2 E, and moves the token from a

i

to a

i+1. The sequence ⇡ is called a
play of this game, and plays(A) ✓ V

! is the set of all such plays in A. A game G

is a triple (A, a0, f), where A = (V,E,') is a game arena, a0 2 V is the initial
position, and f : plays(A) ! D is a payo↵ function, where D is some partially
ordered set. The goal of Player 0 is to maximize the value f(⇡), while Player 1
tries to minimize f(⇡). A strategy �

k

for Player k 2 {0, 1} in a game G is a map
�

k

: V ⇤ ⇥ V

k

! V1�k

, such that (v,�
k

(u, a)) 2 E for all u 2 V

⇤ and a 2 V

k

.
Intuitively, a strategy �

k

determines the successor position �

k

(u, a) 2 V1�k

of
Player k, based on the history u and the current position a. A strategy � is
called memoryless if and only if �(u, a) = �(u0

, a), for all u, u0 2 V

⇤ and a 2 V .
A play ⇡ = a0a1 · · · is consistent with a strategy �

k

for Player k if and only if
for all i � 0 we have that '(a

i

) = k implies a
i+1 = �

k

(a0 · · · ai�1, ai).

Example 4 (Mean payo↵ games [12]). Let A = (V,E,') be an arena, and let
c : E ! Z be a weight function. In Section 3.3, we use these weights to represent
the execution time of moves. A mean payo↵ game over A and c is a triple
G = (A, a0,Mc

), where a0 2 V is the starting position, and

M

c

(a0a1a2 · · · ) = lim inf
n!1

1

n

n�1X

i=0

c(a
i

, a

i+1).

Intuitively, M
c

computes the ‘smallest’ average value of the play a0a1a2 · · · .
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3.2 Scheduling arena

We now formulate the problem of scheduling a concurrent application, repre-
sented as a work automaton A = (Q,P,J ,!), onto a set of heterogeneous
processors, represented as a parallel machine M = (M,J , v). The scheduling
problem consists of finding an optimal strategy in a game on a graph played by
the scheduler (Player 0) and the application (Player 1). Intuitively, the game is
played by alternating moves by the scheduler and the application. A scheduler
move selects a schedule s 2 S(M,J ). Recall the notation for job constraints
from Section 2.2. An application move selects a transition ⌧ = (q,N,w, q

0) that
allows scheduled jobs to progress, and then updates the progress p : J ! Q�0 of
the jobs by executing the scheduled jobs s until one of the jobs x 2 J finishes w

x

units of work. If after the execution the job constraint w is satisfied, the applica-
tion makes transition ⌧ . Otherwise, the application makes the ‘fictitious’ idling
transition ✏

q

:= (q, ;,>, q), where q 2 Q is the current state of the automaton.
We now explain the construction of the game arena in more detail. We

want every play of this game to correspond to an run of the associated work
automaton. Therefore, we record, in every position of the game, the progress
of the jobs and the state of the automaton. We define the positions of the
scheduler as pairs (p, ⌧), where p : J ! Q�0 is the progress of jobs and
⌧ = (q,N,w, q

0) 2 ! [ {✏
q

| q 2 Q} is the transition that is previously taken by
the application (i.e., q0 is the current state of the work automaton). We define the
positions of the application as triples [p, q, s], where p : J ! Q�0 is the progress
of jobs, q 2 Q is the current state of the work automaton and s 2 S(M,J ) is
the set of the scheduled jobs that are selected by the scheduler.

In a position (p, ⌧), the scheduler may select any assignment s 2 S(M,J ) of
jobs to processors, which corresponds to selecting a successor position [p, q0, s].
For the definition of application moves, we first define enabled transitions. In-
tuitively, a transition is enabled in position [p

b

, q

b

, s] if its source state is q
b

, its
job constraint is potentially satisfiable (i.e., p

b

(x)  w

x

, for all x 2 J ) and all
scheduled jobs s can execute (i.e., v

s

(x) > 0 implies p
b

(x) < w

x

, for all x 2 J ).

Definition 4. We call a transition ⌧ = (q,N,w, q

0) enabled at a position b =
[p

b

, q

b

, s] of the application if and only if for all x 2 J , we have that q = q

b

,

p

b

(x)  w

x

, and v

s

(x) > 0 implies p

b

(x) < w

x

. We write E
b

✓ ! for the set of

all transitions that are enabled at b.

If there is no enabled transition, then the application selects the successor
position (p, ✏

q

). Otherwise, the application selects any enabled transition � =
(q,N,w, q

0) 2 E
b

and executes its scheduled jobs, until one of them finishes.

Definition 5. The time to first completion t

b

(�) of an enabled transition � 2 E
b

at a position b = [p, q, s] is

t

b

(�) =

(
min T

b

(�) if T

b

(�) 6= ;
0 otherwise

,

where T

b

(�) = {t 2 Q�0 | 9x 2 J : v
s

(x) > 0 and p(x) + v

s

(x) · t = w

x

}.
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After executing the jobs for t

b

(�) units of time, the progress of the jobs
becomes p+v

s

· t
b

(�), which is defined as (p+v

s

· t
b

(�))(x) = p(x)+v

s

(x) · t
b

(�),
for all x 2 J . If the job constraint of � is satisfied (p + v

s

· t
b

(�) |= w), the
application makes transition � by selecting position (⇢

w

(p+ v

s

· t
b

(�)),�), where
⇢

w

resets the progress of all finished jobs ⇢
w

to zero. If the job constraint of � is
not satisfied (p+v

s

·t
b

(�) 6|= w), the application selects position (p+v

s

·t
b

(�), ✏
q

).

Definition 6. A scheduling arena A over a work automaton (Q,P,J ,!) and

a parallel machine (M,J , v) is a tuple A = (V,E,'), where V = V0 [ V1,

V0 = {(p, ⌧) | p : J ! Q�0 and ⌧ 2 ! [ {✏
q

| q 2 Q}},
V1 = {[p, q, s] | p : J ! Q�0, q 2 Q and s 2 S(M,J )}

are the sets of positions of the scheduler and the application, '(a) = 0 if and

only if a 2 V0, and E ✓ V ⇥ V is the largest relation that satisfies the following

rule: for all a = (p, ⌧) 2 V0 and b = [p, q, s] 2 V1 we have

1. if ⌧ = (�,�,�, q

0
⌧

), then (a, [p, q0
⌧

, s]) 2 E; and

2. if E
b

= ;, then (b, (p, ✏
q

)) 2 E; and

3. if � = (q,N,w, q

0) 2 E
b

, then

(a) p+ v

s

· t
a

(�) |= w implies (b, (⇢
w

(p+ v

s

· t
a

(�)),�)) 2 E; and

(b) p+ v

s

· t
a

(�) 6|= w implies (b, (p+ v

s

· t
a

(�), ✏
q

)) 2 E.

As a scheduling arena A is infinite, it is not an arena as in Section 3.1. The
following lemma provides a su�cient condition ensuring that A is locally finite,
i.e., only finitely many positions in the A are reachable from any given position.

Lemma 1. Let A be a scheduling arena over a work automaton A and a parallel

machine (M,J , v). If A has finitely many transitions, all job constraints in A
are saturated and all speeds v(x, i) are either zero or u, for some u 2 N0, then

only finitely many positions in A are reachable from any given position a 2 A.

Proof. For every job x 2 J , define m
x

= max {w
x

| w is a job constraint in A}.
Since all job constraints are saturated, we have that |J | < 1 and m

x

< 1, for
all x 2 J . Hence, we find ↵ 2 N0 such that for every job x 2 J the progress
p

a

(x) of x at a satisfies ↵p
a

(x) 2 N0. Using Definitions 4, 5 and 6, it follows that
for every job x 2 J the progress p

b

(x) of x at a position b 2 A reachable from
a satisfies p

b

(x) 2 {p
a

(x), 0, 1
↵

, . . . ,

↵m

x

�1
↵

,m

x

}, for all x 2 J . We conclude that
only finitely many positions in A are reachable from any given position a 2 A.

Example 5. Consider the work automaton A = ({0}, ;, {x, y}, {�, ⌧, µ}) and par-
allel machine M2, where � = (0, ;, x = 1 ^ y  1, 0), ⌧ = (0, ;, x = 5 ^ y = 0, 0)
and µ = (0, ;, x = 0 ^ y = 1, 0). Figure 3 shows the scheduling arena over A
and M2 from Example 2 according to Definition 6. A circular position labelled
by k↵, with k 2 {0, 1} and ↵ 2 {✏0,�, ⌧, µ}, corresponds to (p,↵) 2 V0, with
p(x) = 0 and p(y) = k. For k 2 {0, 1}, a square position labeled by k, kx, ky
or kxy corresponds to a position (p, 0, s) 2 V1 with p(x) = 0, p(y) = k and
im(s) = ;, im(s) = {x}, im(s) = {y} or im(s) = {x, y}, respectively.
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0✏0

0�

0⌧

0µ

1✏01�

1⌧1µ0

0x

0y

0xy

1

1x

1y

1xy

1

1

5

1
1

1

1

1

1

Fig. 3. Scheduling arena over a work automaton A from Example 5. Circular positions
belong to the scheduler position and square positions belong to the application.

3.3 Strategies and classical schedules

From a given work automaton A and parallel machine M, we constructed in
Section 3.2 a scheduling arena A. Suppose that the non-deterministic behaviour
of A is fully controlled by the scheduler, i.e., there is only one move possible
at every position a 2 V1 of the application. We now argue that strategies in A

naturally correspond to classical schedules of concurrent applications.
Since the application has a unique strategy, every strategy �0 of the scheduler

induces a play ⇡ in A. The following definition assigns an execution time to every
move in ⇡, which allows us to represent ⇡ as a Gantt chart [13].

Definition 7. The execution time t(a, b) of a move (a, b) 2 E in a scheduling

arena A = (V,E,') is

t(a, b) =

8
><

>:

t

a

(�) if (a, b) 2 V1 ⇥ V0 comes from � 2 E
a

1 if a = [p, q, s] 2 V1 and E[p,q,s0] 6= ; = E
a

for some s

0

0 otherwise

.

The case for t(a, b) = 1 can be seen as a time penalty for selecting s 2
S(M,J ) that unnecessarily blocks the execution (E[p,q,s] = ;).
Example 6. In the scheduling arena in Figure 3, consider the play ⇡ that is
given by 0✏0, 0x, 0⌧, 0xy, 1�, 1, 0µ, 0y, 1µ, 1, 0µ, 0y, 1µ, 1y, 1✏0, 1y, . . .. All zeros on
the move labels are omitted in this arena. Figure 4(a) shows a Gantt chart
representation of ⇡. Note that, since x and y are executed on identical processors
M2, it is not important on which processor x and y are scheduled.

We conclude that every strategy in A naturally induces a classical schedule of
the concurrent application. Conversely, not every classical schedule comes from
a strategy in such an arena A. According to Definition 6, scheduling strategies
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1 x y y

2 x y

(a) Play ⇡ from Example 6

1 x y y

2 x y

(b) Non-semi-anchored schedule

Fig. 4. Play ⇡ from Example 6 (a), and a schedule that is not semi-anchored (b).

induce only semi-anchored schedules, i.e., a job can start at time t + n, with
t 2 Q�0 and 1  n 2 N, only if t = 0 or t is a time that some job finishes, and
all processors are idle between t and t + n. Figure 4(b) shows a schedule that
cannot be represented by a strategy in A. However, shifting the executions of all
jobs y to the left transforms Figure 4(b) into an anchored schedule.

We now show that this shifting always produces a valid schedule for A. Let
S be a (non-semi-anchored) classical schedule, and T ✓ Q�0 be the set of all
finish times of jobs in S including zero. Let t

s

be the start time of a job x with
t

s

/2 T , and t

f

= max {t 2 T | t  t

s

} the last time a job in S finishes before
t

s

. Every transition taken by A after t

f

was already enabled at time t

f

. Thus,
shifting the execution of job x from t

s

to t

f

produces a valid schedule.
We call a scheduling objective regular, whenever this shifting operation pro-

duces a schedule that is at least as good as the initial schedule. For example,
minimizing total execution time is a regular scheduling objective, while schedul-
ing objectives that penalize for jobs that finish ‘too early’ are not regular.

3.4 Scheduling games

In this section, we define payo↵ functions for games played on scheduling graphs
that naturally correspond to regular scheduling objectives.

Let ⇡ = a0a1 · · · be a play in a scheduling arena A = (V,E,'). Using Def-
inition 7, we associate with every initial prefix ⇡

n

= a0 · · · an, n � 0, the total
execution time t

n

=
P

n�1
i=0 t(a

i

, a

i+1). If our application terminates, then for ev-
ery play ⇡ = a0a1 · · · , the sequence t0, t1, . . . eventually stabilizes, i.e., t

n

= t

m

,
for some n and all m � n. Then, t

n

represents the total execution time of ⇡. If
our application does not always terminate, then we cannot associate with every
play ⇡ its total execution time. An example of such an application is a streaming
application (cf., Section 4). A natural scheduling objective in a streaming appli-
cation is latency minimization at some output port o 2 P. We define the latency
at a port o as the average time between two successive I/O operations on o. To
keep track of these I/O operations, we use a map ✓

o

: E ! {0, 1}, such that
✓

o

(a, b) = 1 if and only if b = (p, ⌧) 2 V0, where ⌧ = (q,N,w, q

0) and o 2 N . For
a prefix ⇡

n

= a0 · · · an, n � 0, of ⇡, we define the latency as the ratio between the
total execution time t

n

and the number of I/O operations 1+
P

n�1
i=0 ✓

o

(a
i

, a

i+1).
By varying ✓ : E ! {0, 1}, we define the following class of scheduling games,

called latency games, wherein Player k maximizes the ‘smallest limiting ratio’.
Recall the definition of locally finite scheduling arena’s from Section 3.2.
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Definition 8. Let A = (V,E,') be a locally finite scheduling arena, ✓ : E !
{0, 1} a map, and k 2 {0, 1}. A latency game G for Player k over A and ✓ is a

tuple G = (A, a0, T
k

✓

), where a0 is an initial position and

T

k

✓

(a0a1 · · · ) = lim inf
n!1

(�1)k

1 +
P

n�1
i=0 ✓(a

i

, a

i+1)

n�1X

i=0

t(a
i

, a

i+1), (2)

where t : E ! N0 is the execution time from Definition 7.

Example 7 (Makespan games: T

1
0 ). Let ✓ be the map 0 : E ! {0, 1}, given

by 0(a, b) = 0, for all (a, b) 2 E, and k = 1. The scheduling objective in the

latency game over ✓ and k is given by T

1
0 = lim inf

n!1 �P
n�1
i=0 t(a

i

, a

i+1).
Recall from Section 3.1 that Player 0 wants to maximize T

1
0 , which corresponds

to minimizing the total execution time �T

1
0 = lim sup

n!1
P

n�1
i=0 t(a

i

, a

i+1).

Example 8 (Context-switches: T

0
1 ). Due to changes in the assignment of jobs to

processors, context-switches may occur. Typically, context-switches inflict sub-
stantial overhead and their occurrences should be avoided. This scheduling objec-
tive can be seen as a latency game, where k = 0 and ✓ is the map 1 : E ! {0, 1},
given by 1(a, b) = 1, for all (a, b) 2 E. Then, the scheduling objective becomes

T

0
1 = lim inf

n!1
1

n+1

P
n�1
i=0 t(a

i

, a

i+1), which can be interpreted as maximizing
the average time between two consecutive context-switches. Indeed, every move
by the application executes all scheduled jobs until at least one of them finishes.
The job that finishes should subsequently be descheduled (context-switch), to
avoid suboptimal use of compute resources (i.e., idling).

Note that lim
n!1

n+1
n

= 1 implies that the scheduling objective T 0
1 coincides

with the payo↵ function of the mean payo↵ games in Example 4.

Example 9 (Latency at o: T

1
✓

o

). Let A be a work automaton with a port o 2 P,
and let A = (V,E,') be a scheduling arena over A and some parallel ma-
chine. Using Definition 6, we can identify the moves in the scheduling arena
that come from a transition that requires an I/O operation on port o. Thus,
let ✓

o

: E ! {0, 1} be given by ✓

o

(a, b) = 1 if and only if b = (p, ⌧) 2 V0,
where ⌧ = (q,N,w, q

0) and o 2 N . The scheduling objective T

1
✓

o

corresponds to
maximizing the production rate at port o.

3.5 Optimal strategies

In Section 3.4, we viewed the scheduling problem as a game played on a graph.
We now take advantage of the fact that these games have been extensively
studied in the literature. To do this, we need some terminology about games
on graphs. Let G be a game over an arena A, with initial position a0 2 A,
and payo↵ function f : plays(A) ! D, for some partially ordered set D of
values. A strategy �

k

for Player k 2 {0, 1} secures a value v 2 D whenever
(�1)kf(⇡) � (�1)kv, for every play ⇡ 2 plays(A) consistent with �

k

. Intuitively,
this means that if Player k uses strategy �

k

then the value f(⇡) of any resulting
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play is not worse than v. Now, there exists an optimal strategy for Player k,
whenever the maximum value v

k

(G) = max{(�1)kv | some �

k

secures v} exists.
The game G is determined, whenever v0(G) and v1(G) exist and are equal.

Theorem 1. The latency game for ✓ = 1 is memorylessly determined, and a

memoryless optimal strategy can be found for it in O(|V |2 · |E| · log(|V | · T ) · T )
time, with T = max(a,b)2E

u · t(a, b) and u the speed of the processors.

Proof. For ✓ = 1, a latency game coincides with a mean payo↵ game (cf., Ex-
ample 8). Ehrenfeucht and Mycielski show that mean payo↵ games are memo-
rylessly determined [12]. Brim et al. provide a pseudopolynomial time algorithm
for finding an optimal memoryless strategy [7].

In view of Example 8, the result of Theorem 1 shows that there exists an
optimal strategy (determinacy) of good quality (memoryless) for maximizing
the average time between two consecutive context-switches. For optimal play,
the scheduler need not remember earlier scheduling decisions. Moreover, such an
optimal strategy can be e�ciently computed from the scheduling arena.

4 Cyclo-static dataflow

In a streaming application, a network of filters transforms an input stream of
data into an output stream. Examples of such applications range from video
decoding to sorting algorithms. A streaming application can be formally repre-
sented by a cyclo-static dataflow (CSDF) graph. Bamakhrama and Stefanov pro-
posed a framework for scheduling CSDF graphs that are annotated with worst-
case execution times [4]. In this section, we argue that our proposed scheduling
framework of Section 3 subsumes this scheduling framework for CSDF graphs.

Consider the CSDF graph in Figure 5(a), wherein four filter processes A1,
A2, A3 and A4, called actors, are connected by FIFO bu↵ers. The behaviour
of an actor consists of a periodic sequence of execution steps, whose worst-case
execution time is represented the value (µ

i

) at A

i

, for i 2 {1, 2, 3, 4}. In each
step, an actor atomically consumes tokens from its input bu↵ers and produces
tokens for its output bu↵ers. The production and consumption rates of an actor
A

i

with period n are determined by vectors [x1, . . . , xn

] (Section 3.1 in [4]).
Bamakhrama and Stefanov generate from a CSDF graph with worst-case

execution times a strictly periodic task set (Example 3 in [4]), by determining
for every filter A

i

, a starting time S

i

2 N0 and a period T

i

2 N0 such that all
required input tokens are available for all execution steps of all actors and all
bu↵ers need only a finite capacity throughout the execution. Figure 5(b) shows
the strictly periodic task-set of the CSDF graph in Figure 5(a). Bamakhrama
and Stefanov then use standard scheduling algorithms for strictly periodic task
set to compute a schedule S for this CSDF graph (cf., Section 3.2.2 in [4]).

Every actor A
i

, with i 2 {1, 2, 3, 4}, can be represented as a work automaton
over a single job x

i

, and every bu↵er can be represented as a work automaton
without jobs. Using the composition operator from Section 2.5, we find a work
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A1

A2

A3

A4

[3, 2, 1]

[5, 3, 2]

[2] [2]

[1, 3, 1] [1, 1, 3]

[1, 2]

[4, 1]

(5)

(2)

(3)

(2)

⌅⌅⌅

⌅⌅⌅

⌅⌅⌅

⌅⌅⌅

(a) CSFD (Figure 1 in [4])

A1

A2

A3

A4

(b) Stricly periodic task set (Figure 6 in [4])

Fig. 5. Cyclo-static dataflow model (a) and strictly periodic task set (b).

automaton A that describes the behaviour of the CSFD graph in Figure 5(a).
The behaviour of A is fully under the control of the scheduler. Hence, Section 3.3
shows that, for regular scheduling objectives, the schedule S obtained in [4]
induces a strategy in the scheduling arena A over A and M4.

We conclude that, for regular scheduling objectives, a schedule induced by an
optimal scheduling strategy in a scheduling game is not worse than any schedule
found by the scheduling framework proposed by Bamakhrama and Stefanov.

5 Discussion

We extended constraint automata with job constraints to model the work of pro-
cesses in a concurrent application. We recognize that scheduling decisions do not
completely determine the execution of a concurrent application, and therefore
view scheduler synthesis as playing a game on a graph between a scheduler and
the application. We introduced a class of natural scheduling objectives, and ap-
plied game-theoretic results for mean payo↵ games to find a scheduling strategy
that maximizes the time between subsequent context-switches.

Work automata are similar to timed automata [1]. Clock constraints and
clock valuations correspond to job constraints and progress of jobs. Still, there
are two main di↵erences between them. First, we reset only required jobs in work
automata, while in timed automata clocks can reset at any time. Second, we
allow jobs to make progress at di↵erent speeds, while clocks in timed automata
increment uniformly. Using this clock-speed relaxation, the scheduler controls the
execution rate of each job by selecting which jobs to schedule. Using our notion
of jobs, it seems possible to represent the execution of a concurrent application
on a set of processors by means of hybrid automata [14] or hybrid constraint
automata [9]. However, since such a representation convolutes the specification of
the application with the specification of the parallel machine, hybrid (constraint)
automata are unsuitable for our purpose.

Scheduler synthesis for concurrent applications is similar to controller syn-
thesis for real-time systems [5,6,8,17], because the non-deterministic behaviour
of a real-time system, modeled as a timed automaton [1], is not fully determined
by its controller. Therefore, the controller synthesis problem is formulated as
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a game on the automaton that is played between the controller and an adver-
sary. However, our problem di↵ers from controller synthesis in that scheduler
synthesis requires a strong relation between processes and processors.

The size of a composed work automaton for a whole application very quickly
becomes too large. Moreover, the size of a scheduling arena is again much larger
than that of the work automaton. Nevertheless, an optimal strategy in such an
immense game may indeed have a very simple form (like balancing production
and consumption rates in bu↵ers). One direction for our future work is to inves-
tigate under what conditions it is possible to bypass these exponential blow-ups.
The existence of e�cient solutions for more restricted scheduling problems (e.g.,
CSDF programs [4]) leads us to believe that it is possible to find such conditions.
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