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Abstract. Multicore platforms offer the opportunity for utilizing mas-
sively parallel resources. However, programming them is challenging. We
need good compilers that optimize commonly occurring synchronization/
interaction patterns. To facilitate optimization, a programming language
must convey what needs to be done in a form that leaves a considerably
large decision space on how to do it for the compiler/run-time system.
Reo is a coordination-inspired model of concurrency that allows com-
positional construction of interaction protocols as declarative specifica-
tions. This form of protocol programming specifies only what needs to
be done and leaves virtually all how -decisions involved in obtaining a
concrete implementation for the compiler and the run-time system to
make, thereby maximizing the potential opportunities for optimization.
In contrast, the imperative form of protocol specification in conventional
concurrent programming languages, generally, restrict implementation
choices (and thereby hamper optimization) due to overspecification.
In this paper, we use the Constraint Automata semantics of Reo proto-
cols as the formal basis for our optimizations. We optimize a generaliza-
tion of the producer-consumer pattern, by applying CA transformations
and prove the correctness of the transforms.

1 Introduction

Context. Coordination languages have emerged for the implementation of proto-
cols among concurrent entities (e.g., threads on multicore hardware). One such
language is Reo [1,2], a graphical language for compositional construction of
connectors (i.e., custom synchronization protocols). Figure 1a shows an exam-
ple. Briefly, a connector consists of one or more edges (henceforth referred to as
channels), through which data items flow, and a number of nodes (henceforth
referred to as ports), on which channel ends coincide. The connector in Figure 1a
contains three different channel classes, including standard synchronous channels
(normal arrows) and asynchronous channels with a buffer of capacity 1 (arrows
decorated with a white rectangle, which represents a buffer). Through connector
composition (the act of gluing connectors together on their shared ports), pro-
grammers can construct arbitrarily complex connectors. As Reo supports both
synchronous and asynchronous channels, connector composition enables mixing
synchronous and asynchronous communication within the same specification.
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(b) Per-interaction overhead for
the Pthreads-based implementation
(continuous line; squares) and the
pre-optimized ca-based implemen-
tation (dotted line; diamonds)

Fig. 1: Producers–consumer benchmark

Especially when it comes to multicore programming, Reo has a number of ad-
vantages over conventional programming languages with a fixed set of low-level
synchronization constructs (locks, mutexes, etc.). Programmers using such a con-
ventional language have to translate the synchronization needs of their protocols
into the synchronization constructs of that language. Because this translation oc-
curs in the mind of the programmer, invariably some context information either
gets irretrievably lost or becomes implicit and difficult to extract in the resulting
code. In contrast, Reo allows programmers to compose their own synchroniza-
tion constructs (i.e., connectors) at a high abstraction level to perfectly fit the
protocols of their application. Not only does this reduce the conceptual gap for
programmers, which makes it easier to implement and reason about protocols,
but by preserving all relevant context information, such user-defined synchro-
nization constructs also offer considerable novel opportunities for compilers to
do optimizations on multicore hardware. This paper shows one such occasion.

Additionally, Reo has several software engineering advantages as a domain-
specific language for protocols [3]. For instance, Reo forces developers to separate
their computation code from their protocol code. Such a separation facilitates
verbatim reuse, independent modification, and compositional construction of
protocol implementations (i.e., connectors) in a straightforward way. Moreover,
Reo has a strong mathematical foundation [4], which enables formal connector
analyses (e.g., deadlock detection, model checking [5]).

To use connectors in real programs, developers need tools that automati-
cally generate executable code for connectors. In previous work [6], we therefore
developed a Reo-to-C compiler, based on Reo’s formal semantics of constraint
automata (ca) [7]. In its simplest form, this tool works roughly as follows. First,



it extracts from an input Xml representation of a connector a list of its primitive
constituents.1 Second, it consults a database to find for every constituent in the
list a “small” ca that formally describes the behavior of that particular con-
stituent. Third, it computes the product of the ca in the constructed collection
to obtain one “big” ca describing the behavior of the whole connector. Fourth,
it feeds a data structure representing that big ca to a template. Essentially,
this template is an incomplete C file with “holes” that need be “filled”. The
generated code simulates the big ca by repeatedly computing and firing eligible
transitions in an event-driven fashion. It runs on top of Proto-Runtime [8,9], an
execution environment for C code on multicore hardware. A key feature of Proto-
Runtime is that it provides more direct access to processor cores and control over
scheduling than threading libraries based on os threads, such as Pthreads [10].

Problem. Figure 1a shows a connector for a protocol among k = 3 producers
and one consumer in a producers–consumer benchmark. Every producer loops
through the following steps: (i) it produces, (ii) it blocks until the consumer
has signaled ready for processing the next batch of productions, and (iii) it
sends its production. Meanwhile, the consumer runs the following loop: (i) it
signals ready, and (ii) it receives exactly one production from every producer in
arbitrary order. We compared the ca-based implementation generated by our
tool with a hand-crafted implementation written by a competent C programmer
using Pthreads, investigating the time required for communicating a production
from a producer to the consumer as a function of the number of producers.

Figure 1b shows our results. On the positive side, for k ≤ 256, the ca-based
implementation outperforms the hand-crafted implementation. For k = 512,
however, the Pthreads-based implementation outperforms the generated imple-
mentation. Moreover, the dotted curve looks disturbing, because it grows more-
than-linearly in k: indeed, the ca-based implementation scales poorly. (We skip
many details of this benchmark, including those of the Pthreads-based implemen-
tation, and the meaning/implications of these experimental results. The reason
is that this paper is not about this benchmark, and its details do not matter.
We use this benchmark only as a concrete case to better explain problems of our
compilation approach and as a source of inspiration for solutions.)

Contribution. In this paper, we report on work at improving the scalability of
code generated by our Reo-to-C compiler. First, we identify a cause of poor
scalability: briefly, computing eligibility of k transitions in producers–consumer-
style protocols (and those generalizations thereof that allow any synchronization
involving one party from every one of ` groups) takes O(k) time instead of O(1),
of which the Pthreads-based implementation shows that it is possible. Second,
to familiarize the reader with certain essential concepts, we explain a manual
solution (in terms of Reo’s ca semantics) that achieves O(1). Third, we propose
an automated, general solution, built upon the same concepts as the manual

1 Programmers can use the Ect plugins for Eclipse (http://reo.project.cwi.nl) to
draw connectors such as the one in Figure 1a, internally represented as Xml.

http://reo.project.cwi.nl
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Fig. 2: Example ca, called LossySync, Merger3 and Hourglass

solution. We formalize this automated solution and prove it correct. Although
inspired by our work on Reo and formulated in terms of ca, we make more
general contributions beyond Reo and ca, better explained in our conclusion.

We organized the rest of this paper as follows. In Section 2, we explain ca. In
Section 3, we analyze how the Pthreads-based implementation avoids scalability
issues and how we can export that to our setting. In Sections 4–6, we automate
the solution proposed in Section 3. Section 7 concludes this paper. Definitions
and detailed proofs appear in the appendix of a technical report [11].

Although inspired by Reo, we can express our main results in a purely
automata-theoretic setting. We therefore skip a primer on Reo [1,2].

2 Constraint Automata

Constraint automata are a general formalism for describing systems behavior and
have been used to model not only connectors but also, for instance, actors [12].
Figure 2 shows examples.2,3 In the context of this paper, a ca specifies when
during execution of a connector which data items flow where. Structurally, every
ca consists of finite sets of states, transitions between states, and ports. States
represent the internal configurations of a connector, while transitions describe
its atomic execution steps. Every transition has a label that consists of two
elements: a synchronization constraint (sc) and a data constraint (dc). An sc is a
propositional formula that specifies which ports synchronize in a firing transition

2 The LossySync ca models a connector with one input port A and one output port B.
It repeatedly chooses between two atomic execution steps (constrained by availability
of pending i/o operations): synchronous flow of data from A to B or flow of data
only on A (after which the data is lost, before reaching B). The Merger3 ca models
a connector with three input ports A, B, and C and one output port Z. It repeatedly
chooses between three atomic execution steps: synchronous flow of data from A to Z,
from B to Z, or from C to Z. Finally, the Hourglass ca models a connector with two
input ports A and B, one internal port H, and two output ports Y and Z. It repeatedly
chooses between four atomic execution steps: synchronous flow of data from A via H
to Y, from A via H to Z, from B via H to Y, or from B via H to Z.

3 We show only single state ca for simplicity. Generally, a ca can have any finite
number of states, and the results in this paper are applicable also to such ca.



p ::= any element from Port
Ψ ::= any set of scs
a ::= 0 | 1 | p
ψ ::= a | ψ | ψ + ψ | ψ · ψ |

⊕
(Ψ)

(a) Synchronization constraints

p ::= any element from Port
P ::= any subset of Port
b ::= ⊥ | > | Eq(P ) | d(p) = d(p)
φ ::= b | ¬φ | φ ∨ φ | φ ∧ φ

(b) Data constraints

Fig. 3: Syntax

(i.e., where data items flow); a dc is a propositional formula that (under)specifies
which particular data items flow where. For instance, in Figure 2a, the dc d(A) =
d(B) means that the data item on A equals the data item on B; the dc > means
that it does not matter which data items flow. Let Port denote the global set of
all ports. Formally, an sc is a word ψ generated by the grammar in Figure 3a,
while a dc is a word φ generated by the grammar in Figure 3b.

Figure 3a generalizes the original definition of scs as sets of ports interpreted
as conjunctions [7] (shortly, we elaborate on the exact correspondence). Operator⊕

is a uniqueness quantifier:
⊕

(Ψ) holds if exactly one sc in Ψ holds. Also, we
remark that predicate Eq(P ) is novel. It holds if equal data items are distributed
over all ports in P . In many practical cases—but not all—we can replace a dc
of the shape d(p1) = d(p2) with Eq(P ) if {p1 , p2} ⊆ P . In the development of
our optimization technique, Eq(P ) plays an important role (see also Section 7).

Let Data denote the set of all data items. Formally, we interpret scs and dcs
over distributions of data over ports, δ : Port ⇀ Data, using relations |=sc and
|=dc and the corresponding equivalence relations ≡sc and ≡dc. Their definition for
negation, disjunction, and conjunction is standard; for atoms, we have:

δ |=sc p iff p ∈ Dom(δ)
δ |=dc Eq(P ) iff |Img(δ|P )| = 1
δ |=dc d(p1) = d(p2) iff δ(p1) = δ(p2)

Let
∑

({ψ1 , . . . , ψk}) and
∏

({ψ1 , . . . , ψk}) abbreviate ψ1 + · · · + ψk and
ψ1 · · ·ψk, let SC denote the sets of all scs, and let SC(P ) and DC(P ) denote
the sets of all scs and all dcs over ports in P .

A constraint automaton is a tuple (Q , P , −→ , ı) with Q a set of states,
P ⊆ Port a set of ports, −→ ⊆ Q × SC(P ) × DC(P ) × Q a transition relation
labeled with

[
sc, dc

]
-pairs of the form (ψ , φ), and ı ∈ Q an initial state.

A distribution δ represents a single atomic execution step of a connector in
which data item δ(p) flows on port p (for all ports in the domain of δ). A ca
α accepts streams (i.e., infinite sequences) of such distributions. Every such a
stream represents one possible infinite execution of the connector modeled by α.
Intuitively, to see if α accepts a stream σ, starting from the initial state, take
the first element σ(0) from the stream, check if α has a (ψ , φ)-labeled transition
from the current state such that σ(0) |=sc ψ and σ(0) |=dc φ, and if so, make this
transition, remove σ(0) from the stream, and repeat.

Our ca definition generalizes the original definition of ca [7], because Fig-
ure 3a generalizes the original definition of scs. However, ca as originally defined
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still play a role in the development of our optimization technique: all input ca
that this technique operates on are original. Therefore, we make more precise
what “originality” means. First, let a P -complete product be a product of either
a positive or a negative literal for every port in P . Intuitively, a P -complete
product specifies not only which ports participate in a transition, but it also
makes explicit which ports idle in that transition. Let cp(P , P+) denote a P -
complete product with positive literals P+ ⊆ P . Then, we call an sc ψ original
if a set P+ exists such that cp(P , P+) ≡ ψ (originally, set P+ would be the sc);
we call a ca original if it has only original scs. All ca in Figure 2 are original.

We adopt bisimilarity on ca as behavioral congruence, derived from the
definition for original ca of Baier et al. [7]. Roughly, if α and β are bisimilar,
denoted as α ∼ β, α can simulate every transition of β in every state and vice
versa (see Definition 32 in [11, Appendix A]).

3 Enhancing Scalability: Problem and Solution

We study the scalability of code generated by our compiler using Figure 4.
We start with Figure 4a, which summarizes the code generation process of our
current tool: given an original ca α (computed for the connector to generate
code for), it generates a piece of code alpha by applying transformation g1.

Essentially, alpha consists of an event-driven handler, which simulates α.
This handler runs concurrently with the code of its environment (i.e., the code of
the entitites under coordination), whose events (i.e., i/o operations performed on
ports) it listens and responds to, as follows. Whenever the environment performs
an i/o operation on a port p, it assigns a representation of that operation to
an event variable in a data structure for p (also generated by transformation g1
and part of alpha). This causes the handler to start a new round of simulating
α. Based on the state of α that the handler at that point should behave as,
the handler knows which transitions of α may fire. Which of those transitions
actually can fire, however, depends also on the pending events that previously
occurred (i.e., the pending i/o operations on ports). To investigate this, the
handler checks for every transition that may fire if the pending events (including
the new one) can constitute a distribution δ that satisfies the transition’s label.
If so, the handler fires the transition: it distributes data over ports according to
δ, and the events involved dissolve. Otherwise, if no transition can fire, all events
remain for the next round, and the handler goes dormant.



Now, recall our producers–consumer benchmark in Section 1. Figure 2b shows
the ca for the connector in Figure 1a.4 Generally, for an arbitrary number of
producers k, the corresponding ca αk has k transitions. Consequently, in the
worst case, the handler in the generated alpha k code performs k checks in every
event handling round, which takes O(k) time. Figure 1b shows this as a more-
than-linear increase in execution time for the dotted curve.5 The Pthreads-based
implementation, in contrast, uses a queue for lining up available productions. To
receive a production, the consumer simply dequeues, which takes only O(1) time
(ignoring, for simplicity, the overhead of synchronizing queue accesses). Figure 1b
shows this as a linear increase in execution time for the continuous curve.

Intuitively, by checking all transitions to make the consumer receive, the gen-
erated ca-based implementation performs an exhaustive search for a particular
producer that sent a production. In contrast, by using a queue, the Pthreads-
based implementation avoids such a search: the queue embodies that in this
protocol, it does not matter which particular producer sent a production as long
as some producer has done so (in which case the queue is nonempty). The pro-
ducers are really indistinguishable from the perspective of the consumer. Thus,
to improve the scalability of code generated by our tool, we want to export the
idea of “using queues to leverage indistinguishability” to our setting.

Figure 4b shows a first attempt at achieving this goal: we introduce a manual
transformation h that takes alpha as input and hacks together a new piece of
code beta, which should (i) behave as alpha, (ii) demonstrate good scalability,
and (iii) use queues. For instance, in our producers–consumer example (k = 3),
h works roughly as follows. First, h replaces the event variable in the data
structure for every port p ∈ {A,B,C,Z} with an eventQueue variable that points
to a queue of pending events. In this new setup, to perform an i/o operation,
the environment enqueues an eventQueue, while handler code tests eventQueues
for nonemptiness to check scs, peeks eventQueues to check dcs, and dequeues
eventQueues to fire transitions. Subsequently, h adds initialization code to alpha

to ensure that the eventQueue variables of ports A, B, and C all point to the
same shared queue, while the eventQueue variable for port Z points to a different
queue. Here, h effectively exploits the indistinguishability property of producers
by making the ports that those producers use indistinguishable in our setting.
Finally, h updates the handler code such that it processes the shared queue only

4 To be precise, the ca in Figure 2b describes the behavior of one of the synchronous
regions of the connector in Figure 1a (i.e., a particular subconnector of the whole).
This point is immaterial to our present discussion, however, and ignoring it simplifies
our presentation without loss of generality or applicability.

5 The growth is more-than-linear instead of just linear because of the barrier in the
protocol. When producer P is ready to send its (i+ 1)-th production, the consumer
may not yet have received the i-th production from all other producers. Then, P
must wait until the consumer signals ready (i.e., the barrier). In the worst case,
however, the consumer has received an i-th production only from P such that P has
to wait (k − 1) · O(k) time. Afterward, it takes another O(k) time for P to send its
(i+ 1)-th production. Consequently, sending the (i+ 1)-th production takes k ·O(k)
time, and the complexity of sending a production lies between O(k) and O(k2).
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Fig. 5: Per-interaction overhead for the Pthreads-based implementation (contin-
uous line; squares), the pre-optimized ca-based implementation (dotted line;
diamonds), and the optimized, h-transformed ca-based implementation (dashed
line; triangles) of the producers–consumer scenario in Figure 1

once per event handling round instead of thrice (i.e., once for every transition).
From an automata-theoretic perspective, h replaces the implementation of the
three “physical” transitions with an implementation of one merged “virtual”
transition. When the handler fires this virtual transition at run-time, it actually
fires one of the three physical transitions.

Property (iii) holds of the piece of code beta resulting from applying h to
alpha as just described. Figure 5 shows that also property (ii) holds. The dashed
curve in Figure 5a shows execution times of h-transformed code of the ca-based
implementation in the producers–consumer benchmark. The h-transformed code
scales much better than the original code. Additionally, Figure 5b shows execu-
tion times of the producers–consumer benchmark without a barrier (i.e., produc-
ers send productions whenever they want). In this variant, h achieves even better
results: it transforms a poorly scalable program into one that scales perfectly.6

Establishing property (i), however, is problematic. Although we can infor-
mally argue that it holds, proving this—formally showing the equivalence of two
concurrent C programs—seems prohibitively complex. That aside, the manual
nature of h makes its usage generally impractical, and it seems extremely diffi-
cult to automate it: an automated version of h would have to analyze C code
to recover relevant context information about the protocol, which is not only
hard but often theoretically impossible. Similarly, it seems infeasible to write an

6 Of course, in many cases and for many applications, a purely asynchronous
producers–consumer protocol without a barrier, as in Figure 5b, suffices. The reason
that we initially focused on a producers–consumer protocol with a barrier, which is
also useful yet in other applications, is that its mix of synchrony and asynchrony
makes it a harder, and arguably more interesting, protocol to achieve good scalability
for. Comparing the results in Figures 5a and 5b also shows this.
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Fig. 6: Application of transformations f1 to the ca in Figure 2

optimizing compiler able to transform, for instance, less scalable Pthreads-based
implementations of the producers-consumer scenario (without queues) into the
Pthreads-based implementation (with queues) used in our benchmark. The in-
ability of compilers for lower-level languages to do such optimizations seems a
significant disadvantage of using such languages for multicore programming.

We therefore pursue an alternative approach, outlined in Figure 4c: we in-
troduce a transformation f that takes ca α as input—instead of the low-level C
code generated for it—and transforms it into an equivalent automaton β, a vari-
ant of α with merged transitions (cf. transformation h, which implicitly replaced
the implementation of several physical transitions with one virtual transition).
Crucially, α still explicitly contains all relevant context information about the
protocol, exactly what makes f eligible to automation. In particular, to merge
transitions effectively, f carefully inspects transition labels and takes port indis-
tinguishability into account. The resulting merged transitions have an “obvious”
and mechanically obtainable implementation using queues. A subsequent trans-
formation g2, from β to beta, performs this final straightforward step.

We divide transformation α
f−−→ β into a number of constituent transforma-

tions α
f1−−→ β′

f2−−→ (β′ , Γ )
f3−−→ β, discussed in detail in the following sections.

4 Transformation f1: Preprocessing

Transformation f1 aims at merging transitions t1 , . . . , tk into one transition (q ,
ψ , Eq(P ) , q′), where ψ =

∑
({ψ1 , . . . , ψk}). It consists of two steps.

In the first step, transformation f1 replaces dcs on transitions of α = (Q ,
P , −→ , ı) with Eq(P ), as follows. Because α is an original ca (our current
code generator can handle only original ca), every sc in α is an original sc: for
every transition label (ψ , φ), a set of ports P+ exists such that cp(P , P+) ≡ ψ.
Now, for every product in disjunctive normal form (dnf) of φ, transformation f1
constructs a graph with vertices P+ and an edge (p1 , p2) for every d(p1) = d(p2)
literal. Because cp(P , P+) ≡ ψ, if the resulting graph is connected, the product
of the d(p1) = d(p2) literals is equivalent to Eq(P ). Thus, f1 replaces every
transition label (ψ , φ) in α with an equivalent label (ψ , φ′), where φ′ denotes
the modified dnf of φ, with Eq(P ) for every product of d(p1) = d(p2) literals if
those literals induce a connected graph. Let α′ denote the resulting ca. We can
prove that α′ ∼ α holds (see Lemma 16 in [11, Appendix A]).



In the second step, transformation f1 merges, for every pair of states (q ,
q′), all transitions from q to q′ labeled by dc φ into one new transition. (The
individual transitions differ only in their sc.) Every resulting transition has as
its sc the sum of the scs of the individual transitions. Figure 6 shows examples.
We denote the resulting ca by f1(α). The following proposition holds, because
choices between individual transitions in α are encoded in f1(α) by sum-scs of
merged transitions. Consequently, α and f1(α) can simulate each other’s steps.

Proposition 1. f1(α) ∼ α′

5 Transformation f2: Constructing Hypergraphs

Every merged transition resulting from the previous preprocessing transforma-
tions can perhaps be implemented using queues along the same lines as transfor-
mation h (see Section 3). In the first place, this depends on the extent to which
ports in a merged transition are indistinguishable: no indistinguishable ports
means no queues. Second, the sc of a merged transition should make port indis-
tinguishability (i.e., queues), if present, apparent and mechanically detectable.
The scs of transitions in f1(α) fail to do so. For instance, we (hence a computer)
cannot directly derive from the syntax of sc AZBC+BZAC+CZAB in Figure 6b
that its transition has a scalable implementation with queues. In contrast, the
equivalent sc

⊕
({A , B , C}) · Z makes this much more apparent. From this sc,

we can “obviously” (and mechanically by transformation g2 in Figure 4c) con-
clude that ports A, B, and C may share the same queue, from which exactly one
element is dequeued per firing, because they are indistinguishable indeed: intu-
itively, if δ |=sc

⊕
({A , B , C}) · Z, we cannot know which one of A, B, or C holds,

unless we inspect δ. Thus, beside automatically detecting indistinguishable ports
in a transition, to actually reveal them as queues, we additionally need an al-
gorithm for syntactically manipulating that transition’s sc. We formulate both
these aspects in terms of a per-transition hypergraph [13]. Working with hyper-
graph representations simplifies our reasoning about, and manipulation of, scs
modulo associativity and commutativity. We compute hypergraphs as follows.

Let α = (Q , P , −→ , ı) be an original ca as before, and let (q , ψ , φ , q′) be
a (merged) transition in f1(α). Because α is an original ca and by the construc-
tion of f1(α), we know that ψ is a sum of P -complete products of ports (e.g.,
Figure 6). Because every single port p is equivalent to

⊕
({p}), transformation f2

can represent ψ as a set E of sets E of sets V : E represents the outer sum, every E
represents a P -complete product (E includes/excludes every positive/negative
port), and every V represents an inner exclusive sum. For instance, {{{A} , {
Z}} , {{B} , {Z}} , {{C} , {Z}}} represents the sc of the transition in Figure 6b.
Transformation f2 considers E as the set of hyperedges of a hypergraph over
the set of vertices ℘(Port(ψ)), where Port(ψ) denotes the ports occurring in ψ
(i.e., every vertex is a set of ports). Formally, f2 computes a function graph. Let
Graph denote the set of all hypergraphs with sets of ports as vertices.



Definition 1. graph : SC ⇀ Graph denotes the partial function from scs to
hypergraphs defined as:7

graph(ψ) = (℘(Port(ψ)) ,

{
E

E = {V | V = {p} and p ∈ P+}
and P+ ⊆ Port(ψ) and P+ ∈ P

}
)

if
[
ψ =

∑
(

{
ψ′

ψ′ ≡sc cp(Port(ψ) , P+) and
P+ ⊆ Port(ψ) and P+ ∈ P

}
) for some P

]
A

B

C

Z

(a) Merger3

A

H

Y

B Z

(b) Hourglass

Fig. 7: Hypergraphs for the transitions
of the ca in Figure 6

(The side condition states just that ψ is
a sum of P -complete products of ports.)

Figure 7 shows example hypergraphs
(without unconnected vertices).

We define the meaning of a hyper-
graph as a sum of products of exclusive
sums, where every product corresponds
to a hyperedge. Such a product consists
of exclusive sums of positive ports (one
for each vertex in the hyperedge), and it consists of negative ports (one for ev-
ery port outside the vertices in the hyperedge). We can show that graph is an
isomorphism (i.e., graph(ψ) is a sound and complete representation of ψ).

Definition 2. J·K : (℘(Ver) × ℘(Port)) ∪ Graph → SC denotes the function
from

[
hyperedge, set of ports

]
-pairs and hypergraphs to scs defined as:

JEKP =
∏

({ψ | ψ =
⊕

(V ) and V ∈ E} ∪
{ψ | ψ = p and p ∈ P \ (

⋃
E)})

J(V , E)K =
∑

({ψ | ψ = JEK⋃V and E ∈ E})

Theorem 1. (Theorem 3 in [11, Appendix A]) ψ ≡ Jgraph(ψ)K

In summary, transformation f2 computes graph for every merged transition
in f1(α) and stores each of those graphs in a set Γ (indexed by transitions).

Hypergraphs as introduced are generic representations of synchronization
patterns, isomorphic to but independent of scs in ca. This reinforces that our
optimization approach, transformation f , is not tied ca but a generally appli-
cable technique when relevant context information is available.

6 Transformation f3: Manipulating SCs

Transformation f3 aims at making all indistinguishable ports (hence queues) in
scs on (merged) transitions in f1(α) apparent by analyzing and manipulating
the hypergraphs in Γ , computed by transformation f2. It consists of two steps.

In the first step, transformation f3 computes the indistinguishable ports un-
der every transition t = (q , ψ , φ , q′) in f1(α). We call the ports in a set I in-
distinguishable under t if for every distribution δ such that δ |=sc ψ and |I ∩Dom(

7 Let ℘(X) denote the power set of X.



δ)| = 1, we cannot deduce from δ|P\I which particular port in I is satisfied by δ.
An example appeared in the first paragraph of Section 5. In an implementation
with a queue shared among the ports in I, this means that whenever t fires, we
know that exactly one port in I participated in the transition but not which one,
even if we know all other participating ports (i.e., those outside I).

By analyzing hypergraph γt ∈ Γ for the sc ψ of t, transformation f3 computes
maximal sets of indistinguishable ports under t (larger sets of indistinguishable
ports means larger queues means better scalability), as follows. Recall from Sec-
tion 5 that γt represents a sum (hyperedge relation) of P -complete products
(hyperedges) of singleton exclusive sums (vertices). To understand how port
indistinguishability displays in γt, suppose that ports p1 , p2 ∈ P are indistin-
guishable, and let δ be a distribution such that δ |=sc JγtK. Because γt’s hyperedge
relation E represents a sum of P -complete products, exactly one hyperedge E ∈ E
exists such that δ satisfies JEKP . Then, because |{p1 , p2}∩Dom(δ)| = 1, a vertex
V ∈ E exists such that p1 ∈ V or p2 ∈ V .8 In fact, because every hyperedge
consists of singleton vertices, either {p1} ∈ E or {p2} ∈ E. Now, by inspecting
δ|P\{p1,p2}, we can infer the other vertices in E, beside either {p1} or {p2}. Let
E′ denote this set of vertices, and observe that either E = E1 = E′ ] {{p1}} or
E = E2 = E′]{{p2}}. Because both options are possible, E necessarily includes
both E1 and E2, and importantly, E1 and E2 are equal up to p1 and p2.

Generalizing this example from {p1 , p2} to arbitrarily sized sets I, infor-
mally, the ports in I are indistinguishable if every port in I is involved in the
same hyperedges as every other port in I up to occurrences of ports in I. The fol-
lowing definitions make this generalization formally precise. First, we introduce
a function Edge that determines for a port p which hyperedges in E include p.
(In fact, Edge(p , E) contains all such hypergedges up to occurrences of vertices
with p.) Then, we define a function F that computes maximal sets of ports with
the same set Edge(p , E). Importantly, F yields a partition of the set of ports in
vertices connected by E , denoted by Port(E). Henceforth, we therefore call every
maximal set of indistinguishable ports computed by F a part.

Definition 3. Edge : Port × ℘2(Ver) → ℘2(Ver) denotes the function from[
port, set of hyperedges

]
-pairs to sets of hyperedges defined as:

Edge(p , E) = {W | W = E \ {V } and p ∈ V ∈ E ∈ E}

Definition 4. F : ℘2(Ver) → ℘2(Port) denotes the function from sets of
hyperedges to sets of sets of ports defined as:

F(E) = {P | P ∈ ℘+(Port(E)) and
[[
p ∈ P iff T = Edge(p , E)

]
for all p

]
}

Lemma 1. (Lemma 12 in [11, Appendix A])

1.
⋃
F(E) = Port(E)

2.
[
P1 6= P2 and P1 , P2 ∈F(E)

]
implies P1 ∩ P2 = ∅

8 Otherwise, if p1 , p2 /∈ V for all V ∈ E, the P -complete product represented by E
contains p1 and p2 such that δ 6|=sc p1 and δ 6|=sc p2. This contradicts the assumption
|{p1 , p2} ∩Dom(δ)| = 1, which implies either δ |=sc p1 or δ |=sc p2.



Edge(A , E) = {{{Z}}}
Edge(B , E) = {{{Z}}}
Edge(C , E) = {{{Z}}}
Edge(Z , E) = {{{A}} , {{B}} , {{C}}}

F(E) = {{A , B , C} , {Z}}

(a) Merger3

Edge(A , E) = {{{H} , {Y}} , {{H} , {Z}}}
Edge(B , E) = {{{H} , {Y}} , {{H} , {Z}}}
Edge(H , E) = {{{A} , {Y}} , {{A} , {Z}} , {{B} , {Y}} , {{B} , {Z}}}
Edge(Y , E) = {{{A} , {H}} , {{B} , {H}}}
Edge(Z , E) = {{{A} , {H}} , {{B} , {H}}}

F(E) = {{A , B} , {H} , {Y , Z}}

(b) Hourglass

Fig. 8: Maximal sets of indistinguishable ports of the hypergraphs in Figure 7

In summary, in the first step, transformation f3 computes maximal sets of
indistinguishable ports in every merged transition t = (q , ψ , φ , q′) by applying
F to hyperedge relation E in hypergraph γt for ψ. Figure 8 shows examples.

In the second step, f3 manipulates E of every hypergraph γt such that af-
terward, every vertex in every hyperedge in E is a part in F(E). Importantly,
every vertex V ∈ E ∈ E such that V ∈F(E) represents not just any

⊕
-formula

but one of indistinguishable ports. Consequently, in the meaning of the manipu-
lated γt, indistinguishable ports become apparent as inner

⊕
-formulas as in the

example in the first paragraph of Section 5.
For manipulating hyperedge relation E , we introduce an operation t that

combines two combinable hyperedges into one in a semantics-preserving way.
Roughly, we call two distinct hyperedges E1 , E2 ∈ E combinable if we can
select disjoint vertices V1 , V2 ∈ E1 ∪ E2 such that E1 and E2 are equal up to
inclusion of V1 and V2. We denote this property as (E1 , V1)gE (E2 , V2). Applied
to combinable hyperedges E1 and E2, operation t removes E1 and E2 from E
and adds their combination E† = {V1 ∪ V2} ∪ (E1 ∩E2) to E . Formally, we have
the following. Let Ver denote the set of all vertices.

Definition 5. g⊆ (℘(Ver)× Ver)× (℘(Ver)× Ver)× ℘2(Ver) denotes the
relation on tuples consisting of two sets of

[
hyperedge, vertex

]
-pairs and a set of

hyperedges defined as:

(E1 , V1) gE (E2 , V2) iff

E1 , E2 ∈ E and E1 6= E2 and V1 ∩ V2 = ∅
and E1 = (E2 \ {V2}) ∪ {V1}
and E2 = (E1 \ {V1}) ∪ {V2}


Definition 6. t : (℘(Ver) × Ver) × (℘(Ver) × Ver) × ℘2(Ver) ⇀ ℘2(Ver)
denotes the partial function from tuples consisting of two

[
hyperedge, vertex

]
-

pairs and a set of hyperedges to sets of hyperedges defined as:

(E1 , V1) tE (E2 , V2) = E \ {E1 , E2}) ∪ {{V1 ∪ V2} ∪ (E1 ∩ E2)}

if (E1 , V1) gE (E2 , V2)

Lemma 2. (Lemma 8 in [11, Appendix A])

(E1 , V1) gE (E2 , V2) implies J(V , E)K ≡sc J(V , (E1 , V1) tE (E2 , V2))K

Transformation f3 uses operation t in the algorithm for combining hyper-
edges in Figure 9. Essentially, as long as vertices V1 and V2 exist such that the



while
[[ (X , V1) gE (Y , V2) and

V1 ∪ V2 ⊆ P and P ∈ F(E)

]
for some X , Y , V1 , V2 , P

]
do

while
[[
(E1 , V1) gE (E2 , V2)

]
for some E1 , E2

]
do

E := (E1 , V1) tE (E2 , V2)

Fig. 9: Algorithm for combining hyperedges

A

H

Y

B Z

=⇒

A

H

Y

B Z

Y, Z =⇒

A

H

B

Y, Z =⇒ HA, B Y, Z

Fig. 10: Evolution of the hypergraphs in Figure 7b

ports in V1 ∪ V2 are indistinguishable (as computed by F), the algorithm com-
bines all combinable hyperedges that include V1 and V2. For instance, Figure 10
shows the evolution of the hypergraph in Figure 7b during the run of the algo-
rithm in which it first selects Y and Z as V1 and V2 and afterward A and B. (In
another run, the algorithm may change this order to obtain the same result.)

Let Ein and Eout denote the sets of hyperedges before and after running the
algorithm. To consider the algorithm correct, Eout must satisfy two properties: it
should represent an sc equivalent to the sc represented by Ein (i.e., the algorithm
is semantics-preserving), and every vertex in every hyperedge in Eout should be
a part in F(Ein) (i.e., the algorithm effectively reveals indistinguishability). We
use Hoare logic to prove these properties [14,15]. In particular, we can show that
the triple {Pre} A {Post} holds, where A denotes the algorithm in Figure 9. Pre-
condition Pre states that γt = (V , Ein) is a hypergraph (for the sc of transition
t) such that every port in a connected vertex inhabits at most one connected ver-
tex, and such that every connected vertex is nonempty. The definition of graph
in Definition 1 implies these conditions. (However, because its precondition is
more liberal, the algorithm is more generally applicable.) The postcondition Post
states that correctness as previously formulated holds. Formally:

J(V , Eout)K = J(V , Ein)K and
[[E ∈ Eout implies

E ⊆F(Ein)

]
for all E

]
Figure 11 shows the algorithm annotated with assertions for total correctness.
By the axioms and rules of Hoare logic, this proof is valid if we can prove that
for all six pairs of consecutive assertions, the upper assertion implies the lower
one. For brevity, below, we discuss some salient aspects.

First, the algorithm terminates, because (i) every iteration of the outer loop
consists of at least one iteration of the inner loop, for X = E1 and Y = E2,
(ii) in every iteration of the inner loop, E decreases by one, and (iii) E is finite.
Second, the algorithm is semantics-preserving by Lemma 2. The main challenge
is proving that the algorithm is also effective. A notable step in this proof is
establishing the property labeled Interm from Inv2 (the invariant of the inner



{
Pre
}{

Inv1
}

while
[[ (X , V1) gE (Y , V2) and

V1 ∪ V2 ⊆ P and P ∈ F(E)

]
for some X , Y , V1 , V2 , P

]
do{

Inv1 and Cond1 and |E| = z1
}{

Inv2
}

while
[[
(E1 , V1) gE (E2 , V2)

]
for some E1 , E2

]
do{

Inv2 and Cond2 and |E| = z2
}{

Inv2[E := (E1 , V1) tE (E2 , V2)] and (|E| < z2)[E := (E1 , V1) tE (E2 , V2)]
}

E := (E1 , V1) tE (E2 , V2){
Inv2 and |E| < z2

}{
Inv2 and

[
not Cond2

]}{
Inv2 and Interm and |E| < z1

}{
Inv1 and |E| < z1

}{
Inv1 and

[
not Cond1

]}{
Post

}
Fig. 11: Algorithm for combining hyperedges with assertions for total correctness

loop) and
[
not Cond2

]
(the negation of the inner loop’s condition). Informally,

Interm states that if F denotes the hyperedge relation before running the inner
loop, we have E = F \ (F1,2) ∪ F† after running the inner loop. Here, F1,2

contains all hyperedges from F that include V1 or V2, while F† denotes all new
hyperedges added by t during the loop. This property subsequently enables us
to prove Inv1 (the invariant of the outer loop), which among other properties
states F(Ein) = F(E). Consequently, to prove the algorithm’s effectiveness, it
suffices to show that E ∈ Eout implies E ⊆F(Eout) (for all E).

Theorem 2. (Theorem 4 in [11, Appendix A]) {Pre} A {Post}

In summary, in the second step, for every (merged) transition t = (q , ψ , φ ,
q′) in f1(α), transformation f3 manipulates hypergraph γt to γ′t by running the
algorithm in Figure 9, given the maximal sets of indistinguishable ports com-
puted in f3’s first step with F. Afterward, f3 replaces ψ in t with Jγ′tK, which by
the correctness of the algorithm is equivalent to JγtK and has made indistinguish-
able ports (hence queues) apparent. We denote the resulting transition relation
by (f3◦f1)(−→) and the resulting ca by (f3◦f1)(α). Because ψ ≡sc JγtK ≡sc Jγ′tK
for all transitions t in f1(α), the following proposition follows from Lemma 16
in [11, Appendix A]. Together, Propositions 1 and 2 imply that transformation
f is semantics-preserving.

Proposition 2. (f3 ◦ f1)(α) ∼ f1(α)

We end with some examples in Figure 12. Transformation f3 has not had
any effect on the LossySync ca, so its implementation does not benefit from
queues (no indistinguishable ports), as expected. The Merger3 and Hourglass
ca, in contrast, have changed significantly. In the sc of Merger3, we can now
clearly recognize one queue for ports A, B, and C and one queue for port Z (cf.
transformation h in Section 3); similarly, in the sc of Hourglass, we can now
clearly recognize one queue for ports A and B and one queue for ports Y and Z.



AB ,
Eq({A , B})

AB ,
>

(a) LossySync

⊕
({A , B , C}) · Z ,

Eq({A , B , C , Z})

(b) Merger3

⊕
({A , B}) · H ·

⊕
({Y , Z}) ,

Eq({A , B , H , Y , Z})

(c) Hourglass

Fig. 12: Application of transformation f3 to the ca in Figure 6

Applied to Merger3, transformation f optimizes a multiple-producer-single-
consumer protocol. More abstractly, in this case, f optimizes a protocol among
two groups of processes, X1 (producers) and X2 (consumer), such that |X1| = 3
and |X2| = 1 and all processes in X1 are indistinguishable to all processes
in X2 and vice versa. Generally, f can optimize protocols among n groups of
processes X1 , . . . , Xn such that for all 1 ≤ i , j ≤ n, all processes in Xi are
indistinguishable to all processes in Xj and vice versa. For instance, applied to
Hourglass, f optimizes a protocol among three groups of processes such that
|X1| = |X3| = 2 and |X2| = 1.

After having applied transformation f , the automatic generation of actual
implementations is straightforward (i.e., transformation g2 in Figure 4c). The
resulting code is, in fact, exactly the same as the code that results from manually
applying transformation h as in Section 3 (and consequently, it has the same
performance): instead of checking an event structure for every port as pre-
optimized code does, optimized code checks one eventQueue structure for every
maximal set of indistinguishable ports, which transformation f has made explicit
as
⊕

-formulas in scs (and are thus easy to detect in the f -transformed ca). As
such, optimized code checks the sc of all transitions in the pre-transformation
ca that differ only in indistinguishable ports (before applying f) at the same
time. For k such transitions, consequently, an unscalable exhaustive O(k) search
is optimized to perfectly scalable O(1) queue operations. Thus, with respect to
Figure 4c, the fully mechanical transformation g2 ◦ f = g2 ◦ f3 ◦ f2 ◦ f1 yields the
same code and scalability as the partially manual transformation h ◦ g1.

7 Concluding Remarks

In this paper, we analyzed scalability issues of the code generated by our Reo-
to-C compiler, we explained a manual solution, and we studied the various steps
of a mechanical procedure for transforming a ca α to an equivalent ca β, which
makes port indistinguishability (hence queues) maximally apparent, using the⊕

-operator. Our tool can use this mechanical procedure to generate code for α
via β with good scalability. In particular, whereas unoptimized code generated
for α requires O(k) time to compute eligibility of k transitions—essentially an
exhaustive search—the optimized code generated for β requires only O(1) time:
all maximal sets of indistinguishable ports (explicit in β as a

⊕
-formulas in scs)



in the implementation share the same queue, which optimizes the unscalable
O(k) search to perfectly scalable O(1) queue operations.

Although inspired by our work on a Reo compiler and formulated generally
in terms of ca, we make contributions beyond Reo and ca. The synchronization
pattern that we identified and optimized is common and occurs in many classes
of protocols and their implementation, regardless of the particular language.
Therefore, compilers for other high-level languages may use the same approach as
explained in this paper to similarly optimize code generated for programs in those
languages. In fact, this paper led to adding new features to Proto-Runtime to
enable our optimization technique, thereby facilitating efficient implementation
of our f -transformed ca. Importantly, these new features in Proto-Runtime can
now benefit other languages implemented on top of Proto-Runtime as well.

Automatically performing our optimization directly on low-level code such
as C (instead of on ca) is extremely complex, if not impossible. This shows
that using higher-level languages (that preserve relevant context information
about protocols) for multicore programming can indeed be advantageous for
performance, a significant general observation in language and compiler design
for multicore platforms. Indeed, the work presented in this paper serves as ev-
idence that it is possible not only to specify interaction protocols at a higher
level of abstraction (than locks, mutex, semaphores, message exchanges, etc.)
but also automatically compile and optimize such high-level specifications down
to executable code. Such higher-level specifications convey more of the inten-
tion behind the protocol, which gives more room for a compiler/optimizer to
find and apply efficient implementation alternatives. Lower-level, more impera-
tive, specifications of interaction protocols either lose or obscure the intentions
behind protocols and seriously constrict the ability of compilers/optimizers to
find efficient implementation alternatives. See [11] for related work on high-level
approaches to multicore programming.

This paper makes primarily conceptual and theoretical contributions, and
we used performance figures only to motivate and explain the development of
our optimization technique. An in-depth study of the use of this technique in
practice, including more benchmarks and experiments with different kinds of pro-
tocols and contexts, is our next objective, now that we know that the technique
is correct. As part of this future work, we will also extend our current, limited
proof-of-concept implementation (used in obtaining the data for Figure 5) to a
full implementation. We end with the following remarks.

Indistinguishability of data. Transformation f effectively merges transitions with
labels of the form (ψ , Eq(P )). The reason is that the ports in Eq(P ) are indis-
tinguishable from a data perspective. (Whether those ports are also indistin-
guishable in ψ is exactly what transformation f3 investigates.) Detecting port
indistinguishability in arbitrary dcs so as to improve the applicability of f seems
an interesting and important future challenge.

Guarded automata. Our scs, as arbitrary propositional formulas, seem similar
to guards on transitions in the guarded automata used by Bonsangue et al.



for modeling connector behavior [16]. The intuitive meaning of such guards,
however, significantly differs: guards specify a constraint on the environment,
while scs specify a constraint on an execution step. (In fact, transition labels of
guarded automata carry both a guard and an sc.)

Model-based testing. We skipped an explanation of the actual code generation
process (i.e., transformation g2 in Figure 4), dismissing it as “straightforward”
and “obviously correct”. An interesting line of work to better substantiate the
latter statement is to have our tool generate not only executable code but also
test cases derived from the input ca. Kokash et al. have already worked on such
model-based testing for ca in a different context [17].
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