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ABSTRACT
To make concurrent programming easier, languages (e.g., Go, Rust,
Clojure) have started to offer core support for message passing
through channels in shared memory. However, channels also have
their issues. Multiparty session types (MPST) constitute a method
to make channel usage simpler. In this paper, to consolidate the
best qualities of “static MPST” (early feedback, fast execution) and
“dynamic MPST” (high expressiveness), we present a project that
reinterprets the MPST method through the lens of gradual typing.
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1 INTRODUCTION
Background. To take advantage of modern multi-core processors,
concurrent programming with shared memory—a notoriously diffi-
cult enterprise—has become increasingly important. In the wake
of this development, languages have started to offer core support
for high-level communication primitives, in the form of message
passing through channels (e.g., Go, Rust, Clojure), in addition to
lower-level synchronisation primitives. The idea is that channels
can also serve as a programming abstraction for shared memory.

Supposedly, channels are less prone to concurrency bugs than
locks, semaphores, and the like. Yet, a growing body of evidence
suggests that channels in shared memory also have their issues [38].

A premier source of channel-related concurrency bugs arises out
of the following challenge. Suppose that we have:

• A specification 𝑆 of a communication session among processes
(e.g., a sequence diagram), to be implemented as sends/re-
ceives through a shared channel. Typical specifications rule
out common concurrency bugs [38], such as sends without
receives, receives without sends, or data type mismatches.

• An implementation 𝐼 that should fulfil 𝑆 .
How can we ensure that the channel actions in 𝐼 are indeed safe
relative to 𝑆? Safety means that “bad” channel actions never happen:
if a channel action happens in 𝐼 , then it is allowed to happen in 𝑆 .

State of the art. Multiparty session types (MPST) [19] constitute a
method to automatically prove safety. The idea is to specify sessions
as behavioural types [1, 23] against which processes are statically
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checked. The MPST method ensures that well-typedness at compile-
time implies safety at run-time. Over the past decade, major progress
has been made, both in theory (e.g., extensions with time [7, 30],
security [9–12], and parametrisation [13, 17, 32]), and in practice
(e.g., tools in F# [31], F★ [40], Go [13], Java [21, 22], OCaml [39],
PureScript [25], Rust [26, 27], Scala [15, 34], and TypeScript [29]).

Notwithstanding the achievements, one of the open problems in
the MPST literature has remained unsolved: limited expressiveness.
That is, there continue to be many sessions that cannot be speci-
fied, implemented, and checked statically using the MPST method.
Essentially, the inescapable complication is that the type checker
needs to predict at compile-time how processes will dynamically
behave at run-time. Doing so is hard and undecidable in general. As
a result, static checks are unduly conservative in the MPST method.

In a recent attempt to sidestep this long-standing open problem,
exploratory studies have been conducted to replace static checks
with dynamic ones [18, 20], through run-time monitoring (based on
operational models of behavioural types as state machines). While
successful in terms of high expressiveness, it suffers from typical
static-vs.-dynamic disadvantages: later feedback, slower execution.

Towards gradual MPST. In this paper, we present a project to
consolidate the best qualities of static checks (early feedback, fast
execution) and dynamic ones (high expressiveness), by reinterpret-
ing the MPST method through the lens of gradual typing [36].

The aim of gradual typing is to allow a program to be partially
annotated with types. Annotated segments of the program are
checked at compile-time, while unannotated segments are checked
at run-time. When data flow from a dynamically checked segment
to a statically checked one, they are explicitly cast to the expected
type. If a cast fails, a run-time error is reported before the statically
checked segment is executed. Several languages have adopted a form
of gradual typing (e.g., C# [4], Racket [37], and TypeScript [3]).

To illustrate the key novelties of our project, the main contri-
bution of this paper is the design of a core calculus of monitored
multiparty sessions with casts. It serves as a first foundation of “grad-
ual MPST” by consolidating early feedback and high expressiveness.

Beyond MPST, our general approach (i.e., combining static/dy-
namic analysis by integrating operational models into gradual typ-
ing) can be applied more broadly in automated run-time monitor-
ing [2], to enable mixed compile-time/run-time verification.

2 CORE CALCULUS
Types. Let N = {aaa,bbb, . . .} and T = {Bool, Nat, . . .} denote the sets
of all process names and data types, ranged over by 𝑝, 𝑞 and by 𝑡 .
Let B denote the set of all (behavioural) channel types:

𝐵 ::= 𝜀
�� 𝑝𝑞‽𝑡 �� ★ �� 𝐵1 + 𝐵2

�� 𝐵1 · 𝐵2 �� 𝐵∗
Informally, 𝑝𝑞‽𝑡 specifies the communication of a value of data type
𝑡 from 𝑝 to 𝑞, while ★ specifies any communication (wildcard). The
remaining primitives specify choice, concatenation, and repetition
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(cf. regular expressions). Formally, operational models of channel
types as state machines are defined using transition rules (omitted).
We write 𝐵 𝑝𝑞‽𝑡−−−−→ 𝐵′ to denote a transition from 𝐵 to 𝐵′ with 𝑝𝑞‽𝑡 .

Example 2.1. For any 𝑡 , the following channel
type specifies a session in which numbers are com-
municated from Bob to Alice, from Alice to Carol,
from Bob to Dave, and from Dave to Carol:

𝐵 = bbbaaa‽𝑡 · aaaccc‽𝑡 · bbbddd‽𝑡 · dddccc‽𝑡 bbbaaa‽𝑡−−−−→ 𝐵′ aaaccc‽𝑡−−−−→ 𝐵′′ bbbddd‽𝑡−−−−→ 𝐵′′′ dddccc‽𝑡−−−−→ 𝜀

aaa bbb ccc ddd

Terms (syntax). Let X = {x, y, z, _, . . .}, V = {true, false, 0, 1, . . .},
and E = X∪V∪{!true, x+1, . . .} denote the sets of all data variables,
data values, and data expressions, ranged over by 𝑥 , by 𝑣 , and by 𝑒 .

Let C and P denote the sets of all channel terms and process terms:

𝐶 ::= 𝑘
�� 𝐶 ⟨B⟩ 𝑃 ::= 𝐶 [𝑝𝑞 !𝑒] .𝑃

�� 𝐶 [𝑝𝑞?𝑥 :𝑡] .𝑃 �� if 𝑒 𝑃1 𝑃2 �� · · ·
Channel term 𝑘 implements the access of the channel identified by
𝑘 . Channel term 𝐶 ⟨B⟩ implements a cast of the type of 𝐶 from 𝐵

to B(𝐵), where B : B ⇀ B. Process term 𝐶 [𝑝𝑞 !𝑒] .𝑃 implements
the send of 𝑒 from 𝑝 to 𝑞 through 𝐶 , followed by 𝑃 ′. Process term
𝐶 [𝑝𝑞?𝑥 :𝑡] .𝑃 ′ implements the receive of a value of type 𝑡 into 𝑥

from 𝑝 to 𝑞 through 𝐶 , followed by 𝑃 ′. Let P∗ denote the set of all
concurrent programs (i.e., lists of process terms), ranged over by ®𝑃 .

Example 2.2. For 𝑡 = Nat, the following process terms implement
a session among Alice, Bob, Carol, and Dave over shared channel 𝑘 :
𝑃1 = 𝑘 [bbbaaa?x:𝑡] .𝑘 [aaaccc!x]
𝑃2 = 𝑘 [bbbaaa!fast()] .𝑘 [bbbddd!slow()]

𝑃3 = 𝑘 [aaaccc?_:𝑡] .𝑘 [dddccc?_:𝑡]
𝑃4 = 𝑘 [bbbddd?y:𝑡] .𝑘 [dddccc!y:𝑡]

Terms (static semantics). Let X ⇀ T and {𝑘1, 𝑘2, . . .} ⇀ B de-
note the sets of all data type environments and channel type en-
vironments, ranged over by 𝛤 and by 𝛥. We write 𝛤 [𝑥 ↦→ 𝑡] and
𝛥 [𝑘 ↦→ 𝐵] to update 𝛤 and 𝛥 with new mappings.

We write 𝛤 ⊢ 𝑒 : 𝑡 to denote that 𝑒 is of type 𝑡 (as usual [33]). We
write 𝛥 ⊢ 𝐶 : 𝐵 to denote that 𝐶 is of type 𝐵. We write 𝛤, 𝛥 ⊢ 𝑃 : 111
and ®𝛤, 𝛥 ⊢ ®𝑃 : 111 to denote that 𝑃 and ®𝑃 are one-step safe (i.e., every
next action is safe). Wewrite ®𝛤, 𝛥 ⊢ ®𝑃 : ∗∗∗ to denote that ®𝑃 is any-step
safe (i.e., every next sequence of actions is safe). Formally (excerpt):

𝛥 (𝑘) = 𝐵

𝛥 ⊢ 𝑘 : 𝐵
𝛥 ⊢ 𝐶 : 𝐵1 B(𝐵1) = 𝐵2

𝛥 ⊢ 𝐶 ⟨B⟩ : 𝐵2
𝛤 ⊢ 𝑒 : 𝑡 𝛥 ⊢ 𝐶 : 𝐵 𝐵

𝑝𝑞‽𝑡−−−−→ 𝐵′

𝛤, 𝛥 ⊢ 𝐶 [𝑝𝑞 !𝑒] .𝑃 ′ : 111
∀𝑖

( ®𝛤𝑖 , 𝛥 ⊢ ®𝑃𝑖 : 111
)

®𝛤, 𝛥 ⊢ ®𝑃 : 111
®𝛤, 𝛥 ⊢ ®𝑃 : 111 ∀

( ®𝛤, 𝛥, ®𝑃 −→ ®𝛤 ′, 𝛥′, ®𝑃 ′
) ( ®𝛤 ′, 𝛥′ ⊢ ®𝑃 ′ : ∗∗∗

)
®𝛤, 𝛥 ⊢ ®𝑃 : ∗∗∗

The send of 𝑒 from 𝑝 to 𝑞 through 𝐶 is one-step safe if the type of
𝐶 allows a communication of a value of type 𝑡 from 𝑝 to 𝑞, and 𝑒 is
of type 𝑡 . A concurrent program is one-step safe if every process
is. A concurrent program is any-step safe if it is both one-step safe
and any-step safe after one step (i.e., the rule is defined in terms of
auxiliary type-level reductions [28, 35], which are finite/decidable
abstractions of value-level reductions in the dynamic semantics).

The key novelty of the static semantics is highlighted in the third
rule: processes are checked using the operational models of types
(transitions of 𝐵) instead of using their syntax. The aim is to mimic
run-time monitoring-with-state-machines, but at compile-time; it
enables us to formalise static/dynamic analysis in a unified fashion.

Example 2.3. [𝑃1, 𝑃2, 𝑃3, 𝑃4] in Example 2.2 is not any-step safe
relative to 𝐵 in Example 2.1: informally, the type forbids the com-
munication from Bob to Dave (in red font in Example 2.2) to happen
before the communication from Alice to Carol (in blue font), but the
terms allow it; formally, 𝐵′ cannot reduce with bbbddd‽𝑡 . To make the
program any-step safe, we insert casts at the problematic actions
(in red/blue font) and defer their checks to run-time. For instance,
we replace 𝑃4 with 𝑘 ⟨𝐵′ ↦→ ★ ∗ , 𝐵′′ ↦→ 𝐵′′⟩[bbbddd?y:𝑡] .𝑘 [dddccc!y:𝑡].

Terms (dynamic semantics). We write 𝛥,𝐶 ⇓ 𝐵 to denote that
𝐶 is monitored using 𝐵. We write 𝛥, 𝑃 𝜋−→ 𝛥′, 𝑃 ′ and 𝛥, ®𝑃 −→ 𝛥′, ®𝑃 ′
to denote that 𝑃 and ®𝑃 can reduce to 𝑃 ′ and ®𝑃 ′. Formally (excerpt):

𝛥 (𝑘) = 𝐵

𝛥, 𝑘 ⇓ 𝐵

𝛥,𝐶 ⇓ B(𝐵) = 𝐵

𝛥,𝐶 ⟨B⟩ ⇓ 𝐵

𝛥,𝐶 ⇓ B(𝐵) ≠ 𝐵

𝛥,𝐶 ⟨B⟩ ⇓ 𝜀

⊢ 𝑒 : 𝑡 Δ,𝐶 ⇓ 𝐵 𝐵
𝑝𝑞‽𝑡−−−−→ 𝐵′ id(𝐶) = 𝑘

𝛥,𝐶 [𝑝𝑞 !𝑒] .𝑃 ′ 𝑘 [𝑝𝑞 !𝑒 ]−−−−−−−→ 𝛥 [𝑘 ↦→ 𝐵′], 𝑃 ′

𝑃 = 𝐶 [𝑝𝑞 !𝑒] .𝑃 ′ 𝑃 −̸→

𝛥, 𝑃
id(𝐶) [𝑝𝑞 !err]−−−−−−−−−−−−→ 𝛥, err

id(𝐶) =
{
𝑘 if 𝐶 = 𝑘

id(𝐶) if 𝐶 = 𝐶 ⟨B⟩
The send of 𝑒 from 𝑝 to 𝑞 through 𝐶 is successful if the type of 𝐶
allows it; it fails with an error otherwise. In particular, a failed cast
yields 𝜀, which always results in an error (i.e., 𝜀 has no transitions).

The key novelty of the dynamic semantics is the usage of chan-
nel type environments in (value-level) reductions, to leverage the
same operational models of types as in the static semantics. As a
result, we also get a natural formalisation of run-time monitoring
with state machines in dynamic MPST [18] (i.e., without casts and
the static semantics, the core calculus simplifies to dynamic MPST).

The safety guarantee of the core calculus is that if ®𝛤, 𝛥 ⊢ ®𝑃 : ∗∗∗,
then every process in ®𝑃 never reduces to err, unless a cast fails.

Example 2.4. If 𝑃2 for Bob (Example 2.2) computes the value
to send to Dave slow()-ly indeed, then “coincidentally”, Alice and
Carol always communicate before Bob and Dave, as required by 𝐵

(Example 2.1). Without casts, the “coincidentally safe” actions are
checked statically (fail); with casts, they are checked dynamically
(success). For instance, the cast inserted in 𝑃4 for Dave (Example 2.3)
fails only if 𝑘 is monitored using the operational model of 𝐵′ when
Dave receives, but as Bob computes slow()-ly, this never happens.

3 CONCLUSION
Related work. Igarashi et al. [24] studied gradual typing for

binary sessions (vs. multiparty in ourwork); in their work, processes
are checked using the syntax of types (vs. operational models in our
work). Others [5, 6, 16, 30] studied mixed static/dynamic analysis
at the granularity of processes (vs. actions in our work).

Future work. (1)We aim to build a higher-level language (HLL)
on top of the core calculus (CC) in which channel actions can be
marked as statically/dynamically checked without writing casts
explicitly (as usual with gradual typing [14]). Through automated
cast insertion, HLL can be translated to CC. (2) To also consolidate
fast execution, we aim to develop a technique to optimise away
dynamic checks for channel actions that have already passed static
checks. (3) We aim to implement CC and HLL in Clojure (which
has a form of gradual typing [8]) on top of Discourje (which offers
dynamic MPST in Clojure [18]).
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